-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathocr.py
168 lines (135 loc) · 5.81 KB
/
ocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import time
import cv2
import pytesseract
import numpy as np
# SmashScan libraries
import util
# https://github.com/tesseract-ocr/tesseract/wiki/Command-Line-Usage
# 7 - single text line, 8 - single word, 8 works well with background blobs.
def show_ocr_result(frame):
start_time = time.time()
text = pytesseract.image_to_string(frame, lang="eng", config="--psm 8")
print(text)
util.display_total_time(start_time)
start_time = time.time()
pytess_result = pytesseract.image_to_boxes(frame, lang="eng",
config="--psm 8", output_type=pytesseract.Output.DICT)
print(pytess_result)
util.display_total_time(start_time)
bbox_list = list()
for i, _ in enumerate(pytess_result['bottom']):
tl = (pytess_result['left'][i], pytess_result['bottom'][i])
br = (pytess_result['right'][i], pytess_result['top'][i])
bbox_list.append((tl, br))
util.show_frame(frame, bbox_list=bbox_list, wait_flag=True)
start_time = time.time()
pytess_data = pytesseract.image_to_data(frame, lang="eng",
config="--psm 8", output_type=pytesseract.Output.DICT)
print(pytess_data)
util.display_total_time(start_time)
bbox_list = list()
for i, conf in enumerate(pytess_data['conf']):
if int(conf) != -1:
print("\tconf: {}".format(conf))
tl = (pytess_data['left'][i], pytess_data['top'][i])
br = (tl[0]+pytess_data['width'][i], tl[1]+pytess_data['height'][i])
bbox_list.append((tl, br))
util.show_frame(frame, bbox_list=bbox_list, wait_flag=True)
def ocr_test(img, hsv_flag, avg_flag=False, gau_flag=False,
med_flag=False, bil_flag=False, inv_flag=True):
# Create a grayscale and HSV copy of the input image.
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# If the HSV flag is enabled, select white OR red -> (High S AND Mid H)'
if hsv_flag:
mask = cv2.inRange(img_hsv, (15, 50, 0), (160, 255, 255))
result_img = cv2.bitwise_and(img_gray, img_gray,
mask=cv2.bitwise_not(mask))
else:
result_img = img_gray
# Apply a post blurring filter according to the input flag given.
# https://docs.opencv.org/3.4.5/d4/d13/tutorial_py_filtering.html
if avg_flag:
result_img = cv2.blur(result_img, (5, 5))
elif gau_flag:
result_img = cv2.GaussianBlur(result_img, (5, 5), 0)
elif med_flag:
result_img = cv2.medianBlur(result_img, 5)
elif bil_flag:
result_img = cv2.bilateralFilter(result_img, 9, 75, 75)
# Invert the image to give the image a black on white background.
if inv_flag:
result_img = cv2.bitwise_not(result_img)
display_ocr_test_flags(hsv_flag, avg_flag, gau_flag,
med_flag, bil_flag, inv_flag)
show_ocr_result(result_img)
# Display the OCR test flags in a structured format.
def display_ocr_test_flags(hsv_flag, avg_flag, gau_flag,
med_flag, bil_flag, inv_flag):
print("hsv_flag={}".format(hsv_flag))
if avg_flag:
print("avg_flag={}".format(avg_flag))
elif gau_flag:
print("gau_flag={}".format(gau_flag))
elif med_flag:
print("med_flag={}".format(med_flag))
elif bil_flag:
print("bil_flag={}".format(bil_flag))
print("inv_flag={}".format(inv_flag))
def contour_test(img):
_, contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
img_d = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.drawContours(img_d, contours, -1, (255, 0, 0), 2)
cv2.imshow('test', img_d)
cv2.waitKey(0)
res = np.zeros(img.shape, np.uint8)
for i, contour in enumerate(contours):
img_d = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.drawContours(img_d, contour, -1, (255, 0, 0), 3)
moment = cv2.moments(contour)
if moment['m00']: # Removes single points
cx = int(moment['m10']/moment['m00'])
cy = int(moment['m01']/moment['m00'])
print("Center: {}".format((cx, cy)))
cv2.circle(img_d, (cx, cy), 3, (0, 0, 255), -1)
print("Area: {}".format(cv2.contourArea(contour)))
print("Permeter: {} ".format(cv2.arcLength(contour, True)))
cv2.imshow('test', img_d)
cv2.waitKey(0)
# The result displayed is an accumulation of previous contours.
mask = np.zeros(img.shape, np.uint8)
cv2.drawContours(mask, contours, i, 255, cv2.FILLED)
mask = cv2.bitwise_and(img, mask)
res = cv2.bitwise_or(res, mask)
cv2.imshow('test', res)
cv2.waitKey(0)
for fnum in [5320, 7020]: # 3400 works fine
capture = cv2.VideoCapture("videos/tbh1.mp4")
frame = util.get_frame(capture, fnum, gray_flag=True)
frame = frame[300:340, 80:220] # 300:340, 200:320
cv2.imshow('frame', frame)
cv2.waitKey(0)
#frame = cv2.imread('videos/test4.png', cv2.IMREAD_GRAYSCALE)
#show_ocr_result(frame)
#img2 = cv2.imread('videos/test4.png', cv2.IMREAD_COLOR)
#ocr_test(img2, hsv_flag=False)
#ocr_test(img2, hsv_flag=False, avg_flag=True)
#ocr_test(img2, hsv_flag=False, gau_flag=True)
#ocr_test(img2, hsv_flag=False, med_flag=True)
#ocr_test(img2, hsv_flag=False, bil_flag=True)
#ocr_test(img2, hsv_flag=True)
#ocr_test(img2, hsv_flag=True, avg_flag=True)
#ocr_test(img2, hsv_flag=True, gau_flag=True)
#ocr_test(img2, hsv_flag=True, med_flag=True)
#ocr_test(img2, hsv_flag=True, bil_flag=True)
# https://docs.opencv.org/3.4.5/d7/d4d/tutorial_py_thresholding.html
print("thresh")
blur = cv2.GaussianBlur(frame, (5, 5), 0)
_, thresh = cv2.threshold(blur, 127, 255, cv2.THRESH_BINARY)
th = cv2.medianBlur(thresh, 5)
show_ocr_result(cv2.bitwise_not(th))
print("adaothresh")
_, th2 = cv2.threshold(blur, 0, 255, cv2.THRESH_OTSU)
show_ocr_result(cv2.bitwise_not(th2))
contour_test(th2)