-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathexpressions.Rmd
296 lines (231 loc) · 8.02 KB
/
expressions.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
---
title: "Expressions"
author: "João Neto"
date: October 2014
output:
html_document:
toc: true
toc_depth: 3
fig_width: 6
fig_height: 6
cache: yes
---
Introduction
--------------
In R a **call** is an unevaluated expression which consists of the named function applied to the given arguments. Function `call` is used to create a call. It receives a function's name, plus a series of arguments to be applied to the function. `eval` is used to evaluate the final result.
```{r}
a <- 25
b <- call("sqrt", a)
b
eval(b)
a <- 16 # does not influence the previous environment
eval(b)
is.call(b)
is.call(call) # functions are not calls
c <- call("^", 2, 4) # call can receive multiple arguments
eval(c)
```
`quote` returns the argument as non evaluated:
```{r}
a <- 25
b <- call("sqrt", quote(a))
eval(b)
a <- 16 # now it influences, since R still not evaluated the parameter
eval(b)
eval(quote(b), env=list(b=1)) # reads from an environment (can also be a list or a dataframe)
```
`do.call` constructs and executes a function call from a name or a function and a list of arguments to be passed to it.
```{r}
a <- 10
b <- 2
f <- function (a,b) a/b
do.call("f", args=list(a+1, b))
do.call("f", args=list(b=a, a=b))
# make an environment
env <- new.env()
assign("a", 2, envir = env) # same as env$a <- 2
assign("b", 8, envir = env)
assign("f", function(a,b) a+b, envir = env)
as.list(env)
do.call("f", args=list(quote(a), quote(b)), envir=env)
env$f <- function(a,b) a^b
do.call("f", args=list(quote(a), quote(b)), envir=env)
```
`substitute` return the unevaluated expression, replacing any variables bound in the environment. The environment is a given list of assignments, or if omitted is the current evaluation environment.
```{r}
substitute(a+b, list(a=1))
a <- substitute(a+b+c, list(a=1,c=5))
a
eval(a, list(b=10))
```
We can use `eval` and `substitute` to implement `subset`, a function that return subsets of vectors, matrices or data frames which meet conditions:
```{r}
df <- data.frame(x=11:18, y=18:11)
df
subset(df, x>y)
my.subset <- function(x, condition) {
condition_call <- substitute(condition)
rows <- eval(condition_call, env=x, enclos=parent.frame()) # parent.frame is the var scope the user needs
x[rows, ]
}
my.subset(df, x>y)
a <- 15
my.subset(df, x>a)
```
Notice that these type of functions are no longer referentially transparent. A function is referentially transparent if you can replace its arguments with their values and its behaviour doesn't change. For example, if a function, f(), is referentially transparent and both x and y are 10, then f(x), f(y), and f(10) will all return the same result. Check [here](http://adv-r.had.co.nz/Computing-on-the-language.html) for more info
Expressions
----------
Expressions are calls in R. Function `expression` returns a vector of type "expression" containing its arguments (unevaluated).
```{r}
expr <- expression(x^2 + b*x)
is.expression(expr)
eval(expr, list(x=10, b=3))
eval(expr, list(x=c(10,20,30), b=1:3))
```
`all.vars` return a character vector containing all the names which occur in an expression or call.
```{r}
expr <- expression(x^2 + b*x)
all.vars(expr)
all.vars(quote(expr))
```
Symbolic Computation
----------------
We can do some basic symbolic computation. `D` and `deriv` compute the derivate of an expression:
```{r}
expr <- expression(x^2 + b*x)
de.dx <- D(expr, "x") # for simple variable
de.dx
de.db <- D(expr, "b")
de.db
eval(de.dx, list(b=1, x=10))
# computing n-th derivative
# pre: n>0
Dn <- function(expr, name, n=1) {
if (n == 1)
D(expr, name)
else
Dn(D(expr, name), name, n-1)
}
Dn(expression(sin(x^2)), "x", 3)
expr <- expression(x^2 + b*x*y + y^3)
deriv(expr, namevec=c("x","y")) # for multiple variables
d <- deriv(expr, namevec=c("x","y"), hessian=TRUE) # includes the Hessian, ie, the matrix of second derivatives
d
eval(d, list(x=1,y=3))
```
A more complex eg
------------------
[Ref](http://oddhypothesis.blogspot.pt/2014/08/optimizing-with-r-expressions.html). We are trying to fit data $x$ into the nonlinear model:
$$\frac{K y_0 e^{u(x-tl)}}{K + y_0(e^{u(x-tl)}-1)} + b_1 + (b_0-b_1)e^{-kx} + b_2x$$
```{r}
# the model equation
expr <- expression( (K*y0*exp(u*(x-tl)))/(K + y0*(exp(u*(x-tl))-1)) +
b1 + (b0 - b1)*exp(-k*x) + b2*x )
all.vars(expr)
```
The next line produces a list of the partial derivatives of the above equation with respect to each parameter:
```{r}
ds <- sapply(all.vars(expr), function(v) {D(expr, v)} )
ds
class(ds)
class(ds[[1]])
```
Each element of this list is itself an expression.
Now, if we assign values to the parameters, we can compute the Jacobian matrix $J$, necessary to compute the gradient:
```{r}
jacob <- function(expr, env) {
t( sapply(all.vars(expr), function(v) {eval(D(expr, v), env=env)} ) )
}
```
So, let's give them some values:
```{r}
# this will be the environment for the evaluation of J
ps <- c(y0=0.01, u=0.3, tl=5, K=2, b0=0.01, b1=1, b2=0.001, k=0.1)
x <- seq(0,10)
J <- jacob(expr, env= c(as.list(ps), list(x=x)))
J <- J[names(ps),,drop=F] # drop 'x' row which refers to the independent variable
J
```
The Hessian $H$ is approximately $H \approx J^TJ$
```{r}
H <- J %*% t(J) # because linear algebra in R is a little strange, the transpose is applied to the 2nd Jacobian
```
The gradient is $g = -J r$ where $r$ are the residuals.
We can box all this into a class:
```{r}
ModelObject = setRefClass('ModelObject',
fields = list(
name = 'character',
expr = 'expression'
),
methods = list(
value = function(p, data){
eval(.self$expr, c(as.list(p), as.list(data)))
},
jacobian = function(p, data){
J = t(sapply(all.vars(.self$expr), function(v, p, data){
eval(D(.self$expr, v), c(as.list(p), as.list(data)))
}, p=p, data=data))
return(J[names(p),,drop=F])
},
gradient = function(p, data){
r = data$y - value(p, data)
return(-jacobian(p, data) %*% r)
},
hessian = function(p, data){
J = jacobian(p, data)
return(J %*% t(J))
}
)
)
```
So let's make some fake data and test the model:
```{r}
# the model expression
expr <- expression( (K*y0*exp(u*(x-tl)))/(K + y0*(exp(u*(x-tl))-1)) +
b1 + (b0 - b1)*exp(-k*x) + b2*x )
# make some data:
xs <- seq(0,48,by=0.25)
p0 <- c(y0=0.01, u=0.3, tl=5, K=2, b0=0.01, b1=1, b2=0.001, k=0.1) # true values of the parameters
xy <- list(x=xs,
y=eval(expr, envir=c(as.list(p0), list(x=xs)))
)
plot(xy, main='Fit Results', type="l", col="blue", lty=2, lwd=2); # target function
xy$y <- xy$y+rnorm(length(xs),0,.15) # add some noise
points(xy$x, xy$y, pch=19) # observational data
mo <- ModelObject(
name = 'our eg',
expr = expr
)
# initial values for the parameters (we are assuming that we don't know the true values)
ps <- c(y0=0.05, u=1, tl=3, K=1, b0=0.1, b1=1, b2=0.01, k=0.5)
fit <- nlminb(start = ps,
objective = function(p, data){
r = data$y - mo$value(p,data)
return(r %*% r)
},
gradient = mo$gradient,
hessian = mo$hessian,
data = xy)
lines(xy$x, mo$value(fit$par, xy), col="red", lwd=2) # model estimate
```
And another eg:
```{r}
# make some data:
xy <- list(x=seq(0,10,by=0.25), y=dnorm(seq(0,10,by=0.25),10,2))
p0 <- c(y0=0.01, u=0.2, l=5, A=log(1.5/0.01))
mo <- ModelObject(
name = 'gompertz',
expr = expression( y0*exp(A*exp(-exp((u*exp(1)/A)*(l-x)+1))) )
)
fit <- nlminb(start=p0,
objective= function(p, data){
r = data$y - mo$value(p,data)
return(r %*% r)
},
gradient = mo$gradient,
hessian = mo$hessian,
data=xy)
plot(xy, main='Fit Results', pch=19);
lines(xy$x, mo$value(fit$par, xy), col="red", lwd=2)
```