-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataframes.py
232 lines (198 loc) · 7.7 KB
/
dataframes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import itertools
import logging
import math
from typing import Union
import numpy as np
import pandas as pd
import formulas
def mortgage_amortization(principal: Union[float, int],
down_pmt: Union[float, int],
apr: float,
num_years: int = 30) -> pd.DataFrame:
"""
Creates a `pd.DataFrame` of the mortgage amortization with the following columns:
- mortgage balance
- mortgage payment
- total paid
- equity
- principal paid
- interest paid
Parameters
----------
principal : float or int
down_pmt : float or int
apr : float
num_years : int
Returns
-------
pd.DataFrame
"""
payments_per_year: int = 12
apr = apr / 100 if apr >= 1.0 else apr
t = np.arange(num_years * payments_per_year + 1)
single_payment = formulas.mortgage_payment(loan_amount=principal,
interest_rate=apr,
num_years=num_years,
payments_per_year=payments_per_year)
payment = np.full(t.size, single_payment)
payment[0] = 0
balance = np.zeros(t.size)
balance[0] = principal
period_interest_multiplier = (1 + (apr / payments_per_year))
for i in np.nditer(t[1:]):
balance[i] = (balance[i - 1] * period_interest_multiplier) - payment[i]
total_paid = np.cumsum(payment)
equity = principal - balance
interest = total_paid - equity
principal_paid = total_paid - interest
df = pd.DataFrame({
'month': t,
'mortgage balance': balance,
'mortgage payment': payment,
'total paid': total_paid,
'equity': equity + down_pmt,
'principal paid': principal_paid,
'interest paid': interest,
})
df = df.set_index('month')
return df
def property_tax_amortization(appraisal_val: Union[float, int],
tax_rate: float,
duration: int,
appraisal_growth_rate: float) -> pd.DataFrame:
"""
Parameters
----------
appraisal_val : float or int
tax_rate : float
duration : int
appraisal_growth_rate : float
Returns
-------
pd.DataFrame
"""
t = np.arange(duration)
vectorized_tax_growth = np.vectorize(
lambda x: formulas.compound_interest_amount(appraisal_val, appraisal_growth_rate, 1, x))
# avalue = np.full(t.size, appraisal_val)
avalue = vectorized_tax_growth(t)
annual_tax_owed = avalue * tax_rate
monthly_tax_owed = annual_tax_owed / 12
df = pd.DataFrame(
{
'year': t + 1,
'appraisal value': avalue,
'annual tax owed': annual_tax_owed,
'monthly tax payment': monthly_tax_owed,
}
)
return df.set_index('year')
def amortization_summary(ma_df, tax_df):
df = ma_df.copy()
years = (df.index - 1) / 12 + 1
df['year'] = years.astype(int)
df.at[0, 'year'] = 0
# print(df.keys())
df = df.merge(tax_df[['monthly tax payment', 'appraisal value']], how='left', left_on='year', right_index=True,
copy=False)
df['monthly payment'] = df['mortgage payment'] + df['monthly tax payment']
df['payments'] = np.cumsum(df['monthly payment'])
df['tax paid'] = np.cumsum(df['monthly tax payment'])
df['mortgage payment principal'] = df['principal paid'] / (df['principal paid'] + df['interest paid']) * \
df['mortgage payment']
df['mortgage payment interest'] = df['interest paid'] / (df['principal paid'] + df['interest paid']) * \
df['mortgage payment']
# df = df.drop(columns=['year'])
return df
def return_on_investment(initial_value: Union[float, int],
down_payment: Union[float, int],
closing_rate: float,
loan_interest_rate: float,
num_years: int = 30,
pmi_rate: float = .015,
property_tax_rate: float = 0.02,
apprasial_growth: float = 0.04) -> pd.DataFrame:
tax_df = property_tax_amortization(
appraisal_val=initial_value,
tax_rate=property_tax_rate,
duration=num_years + 1,
appraisal_growth_rate=apprasial_growth
)
# convert index from years starting at 1 to months starting at 0, so it can be merged with the other DataFrame
tax_df.index = pd.Index(data=(tax_df.index - 1) * 12, name='month')
tax_df = tax_df.reindex(np.arange(tax_df.index[-1] + 1), method='pad')
mortgage_df = mortgage_amortization(principal=initial_value - down_payment,
down_pmt=down_payment,
apr=loan_interest_rate,
num_years=num_years)
df = pd.merge(mortgage_df, tax_df,
left_index=True,
right_index=True,
how='outer')
# apply PMI where necessary, defined as when equity is less than 20% of the appraisal value
df['pmi'] = 0
if down_payment < (initial_value * 0.2):
for month, row in df.iterrows():
if row['equity'] < (row['appraisal value'] * 0.2):
df.loc[month, 'pmi'] = (row['mortgage balance'] * pmi_rate) / 12
df['total monthly payment'] = df['mortgage payment'] + df['monthly tax payment'] + df['pmi']
df['tax paid'] = df['monthly tax payment'].cumsum()
df['pmi paid'] = df['pmi'].cumsum()
df['total paid'] = df['total monthly payment'].cumsum() + \
down_payment + \
(closing_rate * df['mortgage balance'].iloc[0])
df['equity'] = df['appraisal value'] - df['mortgage balance']
df['cagr'] = [
math.exp(math.log(roi) / (n / 12)) - 1
if n > 0 else 0
for n, roi in enumerate(np.nditer(df['equity'] / df['total paid']))
]
return df
def crossover(crossover: float,
loan_interest_rate: float,
closing_rate: float,
num_years: int = 30,
pmi_rate: float = .015,
property_tax_rate: float = 0.02) -> pd.DataFrame:
"""
Parameters
----------
crossover : float
loan_interest_rate : float
num_years : int
pmi_rate : float
property_tax_rate : float
Returns
-------
"""
down_payments = np.arange(25, 205, 5)
initial_values = np.arange(200, 650, 50)
asset_growths = np.arange(0, 0.16, 0.01)
df = pd.DataFrame(
columns=pd.MultiIndex.from_product([asset_growths, initial_values], names=['Growth Rate', 'Purchase Price']),
index=pd.Index(down_payments, name='Down Payment')
)
for growth, down_pmt, price in itertools.product(asset_growths, down_payments, initial_values):
s = f'Initial value: {down_pmt}, down pmt: {price}, growth: {growth * 100:.1f}%'
try:
res = return_on_investment(
initial_value=price * 10 ** 3,
down_payment=down_pmt * 10 ** 3,
closing_rate=closing_rate,
loan_interest_rate=loan_interest_rate,
num_years=num_years,
pmi_rate=pmi_rate,
property_tax_rate=property_tax_rate,
apprasial_growth=growth
)
except Exception as e:
logging.exception(e)
logging.error(s)
break
else:
# print(s)
try:
df.loc[down_pmt, (growth, price)] = res[res['cagr'] > crossover].index[0]
except Exception as e:
df.loc[down_pmt, (growth, price)] = -1
return df