Skip to content

Latest commit

 

History

History
80 lines (50 loc) · 2.28 KB

README.md

File metadata and controls

80 lines (50 loc) · 2.28 KB

OpenAP Trajectory Optimizer

This repository contains the flight trajectory optimizer module of OpenAP.

A more detailed user guide can be found at: https://openap.dev/top.

Install

OpenAP.top uses cfgrib for integrating wind data, cartopy for plotting, and a few other libraries. I recommend using conda to install these dependencies. Following is an example how I set it up on my computer for testing.

  1. Create a new conda environment (openap-env) and install the necessary packages:
mamba create -n openap-env python=3.11 -c conda-forge
mamba activate openap-env
mamba install cfgrib cartopy casadi scikit-learn -c conda-forge
  1. Install the most recent version of openap:
pip install --upgrade git+https://github.com/junzis/openap
  1. Install the most recent version of openap-top:
pip install --upgrade git+https://github.com/junzis/openap-top

Quick start

Example code to generate a fuel-optimal flight between two airports:

from openap import top

optimizer = top.CompleteFlight("A320", "EHAM", "LGAV", m0=0.85)

flight = optimizer.trajectory(objective="fuel")

You can specify different objective functions as:

flight = optimizer.trajectory(objective="ci:30")
flight = optimizer.trajectory(objective="gwp100")
flight = optimizer.trajectory(objective="gtp100")

The final flight object is a Pandas DataFrame. The following is an example:

example_optimal_flight

Use wind data

To enable wind in your optimizer, you must first download meteorological data in grib format from ECMWF, for example, the ERA5 data at https://doi.org/10.24381/cds.bd0915c6.

Then enable the wind for the defined optimizer.

Example code:

from openap import top
from openap.top import wind

optimizer = top.CompleteFlight("A320", "EHAM", "LGAV", m0=0.85)

fgrib = "path_to_the_wind_data.grib"
windfield = wind.read_grib(fgrib)
optimizer.enable_wind(windfield)

flight = optimizer.trajectory(objective="fuel")

If your grib file includes multiple timestamps, make sure to filter the correct time in the previous windfield object (pandas DataFrame).

Example of an optimal flight:

example_optimal_flight