-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFaceRecognition.py
151 lines (130 loc) · 5.39 KB
/
FaceRecognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import boto3
import io
import tweepy
import credentials
import requests
from pprint import pprint
from PIL import Image, ImageDraw, ExifTags, ImageColor, ImageFont
"""
This Python script gets an image from AWS S3 Bucket or a Twitter hashtag and use it for face recogniction.
After a face is detected, it tries to recognize who is they comparing it with a
Amazon Rekognition's Collection.
Amazon Rekognition's JSON response returns a boundary box where the faces lie and their
coordinates are expressed as the ratio of the image. Coordinates formulas:
xCoordinate = xInPixels/imageWidth
yCoordinate = yInPixels/imageHeight
There are two methods to get photos for face recognitions (testcases):
-) Using Amazon S3: face_recog_with_s3()
-) Using Twitter API: face_recog_with_twitter()
"""
AWS_REKOG = boto3.client('rekognition')
S3_CONN = boto3.resource('s3')
S3_BUCKET_NAME = 'awsrecok'
S3_TESTCASES_FOLDER = 'Testcases/'
IMAGE_NAME = 'prueba8.jpg'
COLLECTION_NAME = 'networking'
TWITTER_FACE_RECOG_HASHTAG = 'face_networking2019UN'
def get_image_from_s3():
aws_s3_object = S3_CONN.Object(
S3_BUCKET_NAME, S3_TESTCASES_FOLDER + IMAGE_NAME)
response = aws_s3_object.get()
bytes_array = io.BytesIO(response['Body'].read())
return Image.open(bytes_array)
def get_bounding_boxes(request):
response = AWS_REKOG.detect_faces(Image=request, Attributes=['ALL'])
bounding_boxes = []
for details in response['FaceDetails']:
bounding_boxes.append(details['BoundingBox'])
return bounding_boxes
def face_exists(request):
response = AWS_REKOG.detect_faces(Image=request, Attributes=['ALL'])
return response['FaceDetails'] != []
def get_face_name(face, image):
img_width, img_height = image.size
width = img_width * face['Width']
height = img_height * face['Height']
left = img_width * face['Left']
top = img_height * face['Top']
area = (left, top, left + width, top + height)
cropped_image = image.crop(area)
bytes_array = io.BytesIO()
cropped_image.save(bytes_array, format="PNG")
request = {
'Bytes': bytes_array.getvalue()
}
if face_exists(request):
response = AWS_REKOG.search_faces_by_image(
CollectionId=COLLECTION_NAME, Image=request, FaceMatchThreshold=70)
if response['FaceMatches']:
return response['FaceMatches'][0]['Face']['ExternalImageId']
else:
return 'Not recognized'
return ''
def face_recognition_saving_image(image):
print('Starting to recognize faces from Amazon S3 Bucket: {}'.format(S3_BUCKET_NAME))
request = {
'S3Object': {
'Bucket': S3_BUCKET_NAME,
'Name': S3_TESTCASES_FOLDER + IMAGE_NAME
}
}
bounding_boxes = get_bounding_boxes(request)
img_width, img_height = image.size
faces_name = []
for face in bounding_boxes:
faces_name.append(get_face_name(face, image))
draw = ImageDraw.Draw(image)
font = ImageFont.truetype("Hack-Bold.ttf", 37)
for i in range(len(bounding_boxes)):
if not faces_name[i]:
continue
width = img_width * bounding_boxes[i]['Width']
height = img_height * bounding_boxes[i]['Height']
left = img_width * bounding_boxes[i]['Left']
top = img_height * bounding_boxes[i]['Top']
points = ((left, top), (left + width, top), (left + width,
top + height), (left, top + height), (left, top))
draw.line(points, fill='#00d400', width=4)
draw.text((left, top), faces_name[i], font=font)
print('A face has been recognized. Name: ' + faces_name[i])
image.save("output.png")
print('Faces recognition has finished.')
def face_recog_with_s3():
image = get_image_from_s3()
face_recognition_saving_image(image)
def face_recognition_reply(image, bytes_array, tweet_user):
twitter_reply = '@{} Recognized faces: '.format(tweet_user)
request = {
'Bytes': bytes_array.getvalue()
}
bounding_boxes = get_bounding_boxes(request)
for face in bounding_boxes:
name = get_face_name(face, image)
if name:
twitter_reply += name + ","
return twitter_reply
def face_recog_with_twitter():
print('Starting to recognize faces from Twitter hashtag: {}'.format(
TWITTER_FACE_RECOG_HASHTAG))
auth = tweepy.OAuthHandler(
credentials.CONSUMER_API_KEY, credentials.CONSUMER_API_SECRET_KEY)
auth.set_access_token(credentials.ACCESS_TOKEN,
credentials.ACCESS_TOKEN_SECRET)
api = tweepy.API(auth)
for tweet in tweepy.Cursor(api.search, q=TWITTER_FACE_RECOG_HASHTAG, include_entities=True).items():
if 'media' in tweet.entities:
image_url = tweet.entities['media'][0]['media_url']
response = requests.get(image_url)
bytes_array = io.BytesIO(response.content)
image = Image.open(bytes_array)
tweet_user = tweet.user.screen_name
tweet_reply = face_recognition_reply(
image, bytes_array, tweet_user)
try:
api.update_status(tweet_reply[:-1], tweet.id)
print('Replied tweet.')
except tweepy.error.TweepError:
print('This tweet has already been replied.')
print('Faces recognition has finished.')
if __name__ == '__main__':
face_recog_with_twitter()