-
-
Notifications
You must be signed in to change notification settings - Fork 122
/
app.py
144 lines (111 loc) · 4.69 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import streamlit as st
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
load_dotenv()
os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
# read all pdf files and return text
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
# split text into chunks
def get_text_chunks(text):
splitter = RecursiveCharacterTextSplitter(
chunk_size=10000, chunk_overlap=1000)
chunks = splitter.split_text(text)
return chunks # list of strings
# get embeddings for each chunk
def get_vector_store(chunks):
embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001") # type: ignore
vector_store = FAISS.from_texts(chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-pro",
client=genai,
temperature=0.3,
)
prompt = PromptTemplate(template=prompt_template,
input_variables=["context", "question"])
chain = load_qa_chain(llm=model, chain_type="stuff", prompt=prompt)
return chain
def clear_chat_history():
st.session_state.messages = [
{"role": "assistant", "content": "upload some pdfs and ask me a question"}]
def user_input(user_question):
embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001") # type: ignore
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain(
{"input_documents": docs, "question": user_question}, return_only_outputs=True, )
print(response)
return response
def main():
st.set_page_config(
page_title="Gemini PDF Chatbot",
page_icon="🤖"
)
# Sidebar for uploading PDF files
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader(
"Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Done")
# Main content area for displaying chat messages
st.title("Chat with PDF files using Gemini🤖")
st.write("Welcome to the chat!")
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
# Chat input
# Placeholder for chat messages
if "messages" not in st.session_state.keys():
st.session_state.messages = [
{"role": "assistant", "content": "upload some pdfs and ask me a question"}]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Display chat messages and bot response
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = user_input(prompt)
placeholder = st.empty()
full_response = ''
for item in response['output_text']:
full_response += item
placeholder.markdown(full_response)
placeholder.markdown(full_response)
if response is not None:
message = {"role": "assistant", "content": full_response}
st.session_state.messages.append(message)
if __name__ == "__main__":
main()