forked from QijingZheng/pyband
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnpdos
executable file
·996 lines (831 loc) · 34.5 KB
/
npdos
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import re
import sys
import numpy as np
import argparse
from collections import Iterable
import matplotlib as mpl
mpl.use('agg')
import matplotlib.pyplot as plt
from matplotlib.ticker import AutoMinorLocator
import matplotlib.colors as mcolors
from matplotlib.patches import Polygon
############################################################
def gaussian_smearing_org(x, x0, sigma=0.05):
'''
Gaussian smearing of a Delta function.
'''
return 1. / (np.sqrt(2*np.pi) * sigma) * np.exp(-(x - x0)**2 / (2*sigma**2))
def string2index(string):
if ':' not in string:
raise ValueError("Invalid slice string!")
i = []
for s in string.split(':'):
if s == '':
i.append(None)
else:
i.append(int(s))
i += (3 - len(i)) * [None]
return slice(*i)
def gradient_fill(x, y, fill_color=None, ax=None, direction=1, **kwargs):
"""
Plot a line with a linear alpha gradient filled beneath it.
Parameters
----------
x, y : array-like
The data values of the line.
fill_color : a matplotlib color specifier (string, tuple) or None
The color for the fill. If None, the color of the line will be used.
ax : a matplotlib Axes instance
The axes to plot on. If None, the current pyplot axes will be used.
Additional arguments are passed on to matplotlib's ``plot`` function.
Returns
-------
line : a Line2D instance
The line plotted.
im : an AxesImage instance
The transparent gradient clipped to just the area beneath the curve.
"""
line, = ax.plot(x, y, **kwargs)
if fill_color is None:
fill_color = line.get_color()
# print fill_color
zorder = line.get_zorder()
alpha = line.get_alpha()
alpha = 1.0 if alpha is None else alpha
z = np.empty((100, 1, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
if direction == 1:
z[:,:,-1] = np.linspace(0, alpha, 100)[:,None]
else:
z[:,:,-1] = np.linspace(alpha, 0, 100)[:,None]
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
im = ax.imshow(z, aspect='auto', extent=[xmin, xmax, ymin, ymax],
origin='lower', zorder=zorder)
xy = np.column_stack([x, y])
if direction == 1:
xy = np.vstack([[xmin, ymin], xy, [xmax, ymin], [xmin, ymin]])
else:
xy = np.vstack([[xmin, ymax], xy, [xmax, ymax], [xmin, ymax]])
clip_path = Polygon(xy, lw=0.0, facecolor='none', edgecolor='none', closed=True)
ax.add_patch(clip_path)
im.set_clip_path(clip_path)
ax.autoscale(True)
return line, im
############################################################
class procar(object):
'''
A class for dealing with VASP PROCAR file.
'''
def __init__(self, inf='PROCAR', lsoc=False):
'''
Initialization
'''
self._fname = inf
# the directory containing the input file
self._dname = os.path.dirname(inf)
if self._dname == '':
self._dname = '.'
self._lsoc = lsoc
try:
self._procar = open(self._fname, 'r')
except:
raise IOError('Failed to open %s' % self._fname)
self.readProcar()
# parameters usefull for dos generation
self._sigma = 0.05
self._nedos = 3000
# Total DOS for each KS energy, with shape (NSPIN, NKPTS, NBANDS, NEDOS)
self._tdos = None
# Total DOS with shape (NSPIN, NEDOS)
self._totalDOS = None
self._spd_index = {
's' : 0,
'py' : 1, 'pz' : 2, 'px' : 3,
'dxy' : 4, 'dyz' : 5, 'dz2' : 6, 'dxz' : 7, 'dx2' : 8
}
# the basis vectors of the cell
self._cell = None
self._kpath = None
def readProcar(self):
'''
Extract the info from PROCAR.
'''
inp = [line for line in self._procar if line.strip()]
# when the band number is too large, there will be no space between ";" and
# the actual band number. A bug found by Homlee Guo.
# Here, #kpts, #bands and #ions are all integers
self._nkpts, self._nbands, self._nions = [int(xx) for xx in re.sub('[^0-9]', ' ', inp[1]).split()]
# band projectron on each atoms or s/p/d orbitals
self._aproj = np.asarray([line.split()[1:-1] for line in inp
if not re.search('[a-zA-Z]', line)],
dtype=float)
# k-points weights of each k-points
self._kptw = np.asarray([line.split()[-1] for line in inp if 'weight' in line], dtype=float)
# k-points vectors of each k-points
self._kptv = np.asarray([line.split()[-6:-3] for line in inp if 'weight' in line], dtype=float)
# band energies
self._eband = np.asarray([line.split()[-4] for line in inp
if 'occ.' in line], dtype=float)
self._nlmax = self._aproj.shape[-1]
self._nspin = self._aproj.shape[0] // (self._nkpts * self._nbands * self._nions)
self._nspin //= 4 if self._lsoc else 1
if self._lsoc:
self._aproj.resize(self._nspin, self._nkpts, self._nbands, 4, self._nions, self._nlmax)
self._aproj = self._aproj[:,:,:,0,:,:]
else:
self._aproj.resize(self._nspin, self._nkpts, self._nbands, self._nions, self._nlmax)
self._kptw.shape = (self._nspin, self._nkpts)
self._kptw_org = self._kptw.copy()
self._eband.shape = (self._nspin, self._nkpts, self._nbands)
# close the PROCAR
self._procar.close()
def get_nkpts(self):
'''
get number of kpoints.
'''
return self._nkpts
def get_nspin(self):
'''
get number of spin
'''
return self._nspin
def get_nbands(self):
'''
get number of bands
'''
return self._nbands
def get_band_energies(self):
'''
Return the band energies
'''
return self._eband.copy()
def get_kpath(self, cell=None, nkseg=None):
'''
Construct k-point path, find out the k-path boundary if possible.
'''
if self._kpath is None:
if self._cell is None:
if cell is None:
try:
self._cell = read(self._dname + '/POSCAR', format='vasp').cell.copy()
except:
raise ValueError('Error in reading cell info from POSCAR!')
else:
self._cell = np.array(cell, dtype=float)
assert self._cell.shape == (3,3)
if nkseg is None:
if os.path.isfile(self._dname + "/KPOINTS"):
kfile = open(self._dname + "/KPOINTS").readlines()
if kfile[2][0].upper() == 'L':
nkseg = int(kfile[1].split()[0])
else:
raise ValueError('Error reading number of k-points from KPOINTS')
assert isinstance(nkseg, int) and nkseg > 0
nsec = self._nkpts // nkseg
icell = np.linalg.inv(self._cell).T
# vkpts_d = np.diff(self._kptv, axis=0)
# self._kpath = np.zeros(self._nkpts, dtype=float)
# self._kpath[1:] = np.cumsum(np.linalg.norm(np.dot(vkpts_d, icell), axis=1))
v = self._kptv.copy()
for ii in range(nsec):
ki = ii * nkseg
kj = (ii + 1) * nkseg
v[ki:kj,:] -= v[ki]
self._kpath = np.linalg.norm(np.dot(v, icell), axis=1)
for ii in range(1, nsec):
ki = ii * nkseg
kj = (ii + 1) * nkseg
self._kpath[ki:kj] += self._kpath[ki - 1]
self._kbound = np.concatenate((self._kpath[0::nkseg], [self._kpath[-1],]))
return self._kpath, self._kbound
def isSoc(self):
return True if self._lsoc else False
def get_sigma(self):
'''
return dos brodening parameter
'''
return self._sigma
def set_sigma(self, sigma):
'''
set dos brodening parameter
'''
self._sigma = sigma
# re-generate the DOS with the new SIGMA
if self._tdos is not None:
if not np.isclose(sigma, self._sigma):
self.init_dos()
def get_nedos(self): return self._nedos
def set_nedos(self, nedos):
'''
set number of point in smooth DOS
'''
assert isinstance(nedos, int), 'NEDOS shoule be int!'
self._nedos = nedos
# re-generate the DOS with the new NEDOS
if self._tdos is not None:
if self._nedos != nedos:
self.init_dos()
def get_kpts_weight(self):
'''
return the k-points weights
'''
return self._kptw.copy()
def set_kpts_weight(self, kptw):
'''
set the k-points weights
'''
kptw = np.array(kptw)
assert kptw.shape == self._kptw.shape
self._kptw = kptw
# re-generate the DOS with the new kptw
if self._tdos is not None:
self.init_dos()
def restore_kpts_weight(self, kptw):
'''
set the k-points weights
'''
self._kptw = self._kptw_org.copy()
# re-generate the DOS with the new kptw
if self._tdos is not None:
self.init_dos()
def init_dos(self):
'''
dos initialization
'''
# print 'calculating dos'
emin = self._eband.min()
emax = self._eband.max()
eran = emax - emin
emin = emin - eran * 0.05
emax = emax + eran * 0.05
self._xen = np.linspace(emin, emax, self._nedos)
self._tdos = np.empty((self._nspin, self._nkpts, self._nbands, self._nedos))
for ispin in range(self._nspin):
sign = 1 if ispin == 0 else -1
for ikpt in range(self._nkpts):
for iband in range(self._nbands):
x0 = self._eband[ispin, ikpt, iband]
self._tdos[ispin, ikpt, iband] = sign * self._kptw[ispin,ikpt] \
* gaussian_smearing_org(self._xen, x0, self._sigma)\
def translate_selection(self, atoms=':', kpts=':', spd=':'):
'''
'''
# string is Iterable too
assert (isinstance(atoms, int)
or isinstance(atoms, Iterable)
or isinstance(atoms, str))
assert (isinstance(kpts, int)
or isinstance(kpts, Iterable)
or isinstance(kpts, str))
assert (isinstance(spd, int)
or isinstance(spd, Iterable)
or isinstance(kpts, str))
if isinstance(atoms, str):
atoms = string2index(atoms)
if isinstance(kpts, str):
kpts = string2index(kpts)
if isinstance(spd, str):
spd = string2index(spd)
# remove duplicate selections
if isinstance(atoms, Iterable):
atoms = list(set(atoms))
if isinstance(kpts, Iterable):
kpts = list(set(kpts))
if isinstance(spd, Iterable):
spd = [ii if isinstance(ii, int) else self._spd_index[ii]
for ii in spd]
spd = list(set(spd))
return atoms, kpts, spd
def get_proj(self):
'''
get the partial weight.
'''
return self._aproj.copy()
def get_total_dos(self):
'''
The total DOS
'''
if self._tdos is None:
self.init_dos()
if self._totalDOS is None:
self._totalDOS = np.sum(self._tdos, axis=(1, 2))
return self._xen, self._totalDOS
def get_pw(self, atoms=':', kpts=':', spd=':'):
'''
Get site/k-points/spd-orbital projected weight for each KS orbital.
atoms : selected atoms index.
Valid values:
":" -> for all atoms
"0::2" -> for even index atoms
[0, 1, 2] -> atom indices specified by list
0 -> atom indices specified by integer
kpts : selected k-points index
Valid values:
":" -> for all k-points
"0::2" -> for even index k-points
[0, 1, 2] -> k-points indices specified by list
0 -> k-points indices specified by integer
spd : selected s/p/d-orbitals, the s/p/d-orbital and the corresponding
index are:
's' : 0,
'py' : 1, 'pz' : 2, 'px' : 3,
'dxy' : 4, 'dyz' : 5, 'dz2' : 6, 'dxz' : 7, 'dx2' : 8
Valid values:
":" -> for all s/p/d-orbitals
"0::2" -> for even index
[0, 1, 2] -> s/p/d-orbitals specified by list of integer
['s', 'py'] -> s/p/d-orbitals specified by list of names
0 -> s/p/d-orbitals indices specified by integer
'''
atoms, kpts, spd = self.translate_selection(atoms, kpts, spd)
# problem with mixed advanced indexing and basic indexing, see scipy
# documents for reference
# https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#combining-advanced-and-basic-indexing
#
# a=np.zeros((2,3,4)); b=np.ones((3,4)); I=np.array([0,1])
# b[:,I].shape = (3, 2)
# a[0,:,I].shape = (2, 3)
# Consider indexing a 3D array arr with shape (X, Y, Z):
#
# arr[:, [0, 1], 0] has shape (X, 2).
# arr[[0, 1], 0, :] has shape (2, Z).
# arr[0, :, [0, 1]] has shape (2, Y), not (Y, 2)
pw = []
for ispin in range(self._nspin):
p0 = self._aproj[ispin, kpts]
# sum over the s/p/d projection
p0 = np.sum(p0[..., spd], axis=-1)
# sum over the site projection
p0 = np.sum(p0[..., atoms], axis=-1)
pw.append(p0)
return np.array(pw, dtype=float)
def get_pdos(self, atoms=':', kpts=':', spd=':'):
'''
Get site/k-points/spd-orbital projected partial density of states (PDOS)
'''
if self._tdos is None:
self.init_dos()
pdos = []
proj = self.get_pw(atoms, kpts, spd)
atoms, kpts, spd = self.translate_selection(atoms, kpts, spd)
if np.alltrue(
np.sort(np.arange(self._nkpts)[kpts]) == np.arange(self._nkpts)
):
used_all_kpts = True
else:
used_all_kpts = False
for ispin in range(self._nspin):
pw = proj[ispin]
if used_all_kpts:
td = self._tdos[ispin, kpts]
else:
# if not all the k-points are used, then probably we should get
# rid of the k-point weights
td = self._tdos[ispin, kpts,...] / self._kptw[kpts, np.newaxis, np.newaxis]
pdos.append(np.sum(pw[...,np.newaxis] * td, axis=(0, 1)))
# pwht = np.sum(self._aproj[ispin][kpts,:,atoms,spd], axis=(-1, -2))
# pdos.append(np.sum(pwht[..., np.newaxis] * self._tdos[ispin][kpts,...], axis=(0, 1)))
# only return one dos if not spin-polarized
# p = pdos[0] if self._nspin == 1 else pdos
pdos = np.array(pdos, dtype=float)
return self._xen, pdos
def get_pband(self, atoms=':', kpts=':', spd=':',
cell=None,
nkseg=None):
'''
Construct the band structure from PROCAR. In addition, the
site/k-points/spd-orbital projection of each KS orbital will be
returned.
'''
k, b = self.get_kpath(cell, nkseg)
e = self.get_band_energies()
w = self.get_pw(atoms, kpts, spd)
return k, b, e, w
############################################################
def init_fig(args):
'''
matplotlib figure initialization
'''
plt.style.use(args.style)
# do NOT use unicode minus
mpl.rcParams['axes.unicode_minus'] = False
fig, axes = plt.subplots(nrows=args.nrows, ncols=args.ncols,
sharex=args.sharex,
sharey=args.sharey)
fig.set_size_inches(args.figsize)
plt.subplots_adjust(
left=args.fleft, right=args.fright,
bottom=args.fbottom, top=args.ftop,
wspace=args.wspace, hspace=args.hspace)
axes = [axes] if (args.ncols * args.nrows == 1) else axes.flatten()
for ii, ax in enumerate(axes):
if args.sharex or args.sharey:
ir = ii // args.ncols # row index of axes
ic = ii - ir * args.ncols # col index of axes
if ic == 0: # left-most col has ylabel
ax.set_ylabel('DOS [arb. units]', fontsize=args.ylabsize,
labelpad=args.ylabpad)
if ir == args.nrows - 1: # bottom row has ylabel
ax.set_xlabel('Energy [eV]', fontsize=args.xlabsize,
labelpad=args.ylabpad)
else:
ax.set_xlabel('Energy [eV]', fontsize=args.xlabsize,
labelpad=args.xlabpad)
ax.set_ylabel('DOS [arb. units]', fontsize=args.ylabsize,
labelpad=args.xlabpad)
# Number of minor ticks
ax.xaxis.set_minor_locator(AutoMinorLocator(n=args.nxminor if
args.nxminor else args.nminor))
ax.yaxis.set_minor_locator(AutoMinorLocator(n=args.nyminor if
args.nyminor else args.nminor))
# ticklabel font size
ax.tick_params(axis='x', labelsize=args.xticklabsize)
ax.tick_params(axis='y', labelsize=args.yticklabsize)
if args.showpanel:
x, y = args.panelloc
ax.text(x, y, '({})'.format(chr(97 + ii)),
ha=args.panelha,
va=args.panelva,
family='monospace',
fontsize=args.panelfontsize,
transform=ax.transAxes
)
if not args.notight:
fig.tight_layout(pad=args.pad, h_pad=args.hpad, w_pad=args.wpad)
fig.set_dpi(args.dpi)
args.fig = fig
args.axes = axes
return args
def parse_figure_args():
'''
'''
par = argparse.ArgumentParser(add_help=False)
par.add_argument('-nr', '-nrows', action='store', dest='nrows', type=int, default=1)
par.add_argument('-nc', '-ncols', action='store', dest='ncols', type=int, default=1)
par.add_argument('-f', '-figsize', action='store', dest='figsize', type=float, nargs=2,
default=(4.0, 3.0))
par.add_argument('-wspace', action='store', dest='wspace', type=float,
default=0.2)
par.add_argument('-hspace', action='store', dest='hspace', type=float,
default=0.2)
par.add_argument('-pad', action='store', dest='pad', type=float,
default=0.5)
par.add_argument('-hpad', action='store', dest='hpad', type=float,
default=0.5)
par.add_argument('-wpad', action='store', dest='wpad', type=float,
default=0.5)
par.add_argument('-fleft', action='store', dest='fleft', type=float,
default=0.05)
par.add_argument('-fright', action='store', dest='fright', type=float,
default=0.95)
par.add_argument('-fbottom', action='store', dest='fbottom', type=float,
default=0.10)
par.add_argument('-ftop', action='store', dest='ftop', type=float,
default=0.95)
par.add_argument('-notight', action='store_true', dest='notight',
default=False,
help='apply tight layout')
par.add_argument('-sharex', action='store_true', dest='sharex',
default=False,
help='Share x axis among the axes.')
par.add_argument('-sharey', action='store_true', dest='sharey',
default=False,
help='Share y axis among the axes.')
par.add_argument('-xlabsize', action='store', dest='xlabsize',
default=None,
help='Xlabel font size.')
par.add_argument('-ylabsize', action='store', dest='ylabsize',
default=None,
help='Ylabel font size.')
par.add_argument('-xticklabsize', action='store', dest='xticklabsize',
default='small',
help='Xtick label font size.')
par.add_argument('-yticklabsize', action='store', dest='yticklabsize',
default='small',
help='Ytick label font size.')
par.add_argument('-xlabpad', action='store', dest='xlabpad', default=5)
par.add_argument('-ylabpad', action='store', dest='ylabpad', default=5)
par.add_argument('-nminor', action='store', dest='nminor', type=int,
default=2,
help='Number of minor tick locators.')
par.add_argument('-nxminor', action='store', dest='nxminor', type=int,
default=2,
help='Number of minor xtick locators.')
par.add_argument('-nyminor', action='store', dest='nyminor', type=int,
default=2,
help='Number of minor yick locators.')
par.add_argument('-style', action='store', dest='style', type=str,
choices=mpl.style.available,
default='default',
help='Matplotlib style specification.')
par.add_argument('-dpi', action='store', dest='dpi', type=int,
default=300)
par.add_argument('-o', '-out', action='store', dest='out', type=str,
default='dos.png',
help='Output image name')
par.add_argument('-showpanel', action='store', dest='showpanel', type=str2bool,
default=True)
par.add_argument('-panelloc', action='store', dest='panelloc', nargs=2,
type=float, default=(0.05, 0.95))
par.add_argument('-panelha', action='store', dest='panelha', type=str,
choices=['left', 'right', 'bottom', 'top', 'center'],
default='left')
par.add_argument('-panelva', action='store', dest='panelva', type=str,
choices=['left', 'right', 'bottom', 'top', 'center'],
default='top')
par.add_argument('-panelfontsize', action='store', dest='panelfontsize',
default=None)
return par
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def parse_pdos_arg():
'''
'''
par = argparse.ArgumentParser(add_help=False)
par.add_argument('-i', '-inp', action='append', dest='inp', type=str,
default=[],
help='location of PROCARS')
par.add_argument('-a', '-ax', action='append', dest='ax', type=int,
default=[],
help='on which axes to plot DOS')
par.add_argument('-p', '-pdos', action='append', dest='pdos', type=str,
default=[],
help='Atom indices for dos projection')
par.add_argument('-pv', '-visible', action='append', dest='pvisible',
type=str2bool,
default=[],
help='PDOS visible?')
par.add_argument('-k', '-kpts', action='append', dest='kpts', type=str,
default=[],
help='k-points indices for dos projection')
par.add_argument('-spd', action='append', dest='spd', type=str,
default=[],
help='s/p/d orbital indices for dos projection')
par.add_argument('-soc', action='append', dest='soc', type=str2bool,
default=[],
help='PROCAR with SOC?')
par.add_argument('-tdos', action='append', dest='tdos', type=str2bool,
default=[],
help='show total dos?')
par.add_argument("-x", '-xlim', action='append', dest='xlim', type=float,
default=[], nargs=2,
help='x-limit for dos plot')
par.add_argument("-y", '-ylim', action='append', dest='ylim', type=float,
default=[], nargs=2,
help='y-limit for dos plot')
par.add_argument('-xshift', action='append', dest='xshift', type=float,
default=[],
help='x shift for the dos plot.')
par.add_argument('-yshift', action='append', dest='yshift', type=float,
default=[],
help='y shift for the dos plot.')
par.add_argument('-scale', action='append', dest='scale', type=float,
default=[],
help='scale factor for the dos plot')
par.add_argument('-z', '-zero', action='append', dest='zero', type=float,
default=[],
help='Fermi energy for each PROCAR.')
par.add_argument('-s', '-sigma', action='append', dest='sigma', type=float,
default=[],
help='Smearing parameter for dos plot')
par.add_argument('-n', '-nedos', action='append', dest='nedos', type=int,
default=[],
help='No. of interpolation points in dos plot')
par.add_argument('-lw', action='append', dest='linewidths', type=float,
default=[],
help='line width in dos plot')
par.add_argument('-tlw', action='append', dest='tdos_lw', type=float,
default=[],
help='line width in total dos plot')
par.add_argument('-lc', action='append', dest='linecolors', type=str,
default=[],
help='line color in dos plot')
par.add_argument('-tlc', action='append', dest='tdos_lc', type=str,
default=[],
help='line color in total dos plot')
par.add_argument("-l", '-label', action='append', dest='label', type=str,
default=[],
help='label for the pdos')
par.add_argument("-tlab", action='append', dest='tdos_lab', type=str,
default=[],
help='label for the total dos')
par.add_argument('-lloc', action='append', dest='legendLoc', type=str,
default=[],
help='Legend location.')
par.add_argument('-lfontsize', action='append', dest='legendFontsize',
default=[],
help='Legend fontsize.')
par.add_argument('-lncol', action='append', dest='legendNcols', type=int,
default=[],
help='Number of columns in legend.')
return par
def pdosAtomsIndex(ind):
'''
'''
AtomInd = []
for xx in ind:
tmp = xx.split()
assert len(tmp) > 0, \
'pdos atom specification should not be empty!'
if len(tmp) == 1:
if ':' in tmp[0]:
AtomInd.append(tmp[0])
else:
AtomInd.append([int(tmp[0])])
else:
tmp_s_ind = []
for ss in tmp:
if ':' in ss:
ii = ss.split(":")
assert len(ii) > 1 and len(ii) <= 3, ''
start_ind = int(ii[0])
end_ind = int(ii[1])
stride = 1 if len(ii) == 2 else int(ii[2])
tmp_s_ind += range(start_ind, end_ind, stride)
else:
tmp_s_ind.append(int(ss))
AtomInd.append(list(set(tmp_s_ind)))
return AtomInd
def process_dos_args(p):
'''
'''
nr = p.nrows
nc = p.ncols
if p.inp == []:
p.inp = ['PROCAR']
p.naxes = nr * nc
p.npros = len(p.inp)
p.npdos = len(p.pdos)
p.pdos = pdosAtomsIndex(p.pdos)
# setting default parameters for dos plot
p.inp += ['PROCAR'] * (p.npdos - len(p.inp))
p.tdos += [True] * (p.npdos - len(p.tdos))
p.ax += [0] * (p.npdos - len(p.ax ))
p.kpts += [':'] * (p.npdos - len(p.kpts))
p.spd += [':'] * (p.npdos - len(p.spd))
p.pvisible += [True] * (p.npdos - len(p.pvisible))
p.soc += [False] * (p.npros - len(p.soc))
p.sigma += [0.05] * (p.npros - len(p.sigma))
p.nedos += [3000] * (p.npros - len(p.nedos))
p.zero += [0.0] * (p.npros - len(p.zero))
p.xshift += [0.0] * (p.npdos - len(p.xshift))
p.yshift += [0.0] * (p.npdos - len(p.yshift))
p.scale += [1.0] * (p.npdos - len(p.scale))
p.linewidths += [0.5] * (p.npdos - len(p.linewidths))
p.linecolors += [None] * (p.npdos - len(p.linecolors))
p.label += [''] * (p.npdos - len(p.label))
p.tdos_lw += [0.5] * (p.npdos - len(p.tdos_lw))
p.tdos_lc += ['k'] * (p.npdos - len(p.tdos_lc))
p.tdos_lab += ['total'] * (p.npdos - len(p.tdos_lab))
p.xlim += [(-6, 6)] * (p.naxes - len(p.xlim))
p.ylim += [(None,None)] * (p.naxes - len(p.ylim))
p.legendLoc += ['upper right'] * (p.naxes - len(p.legendLoc))
p.legendNcols += [1] * (p.naxes - len(p.legendNcols))
p.legendFontsize += ['small'] * (p.naxes - len(p.legendFontsize))
return p
def parse_cml_arg(inp):
cml_fig = parse_figure_args()
cml_dos = parse_pdos_arg()
par = argparse.ArgumentParser(parents=[cml_fig, cml_dos])
par.add_argument('-q', '-quiet', action='store_true', dest='quiet',
default=False,
help='not show image')
args = par.parse_args(inp)
args = process_dos_args(args)
return args
def init_procar(p):
'''
'''
# processing pdos
no_dup_procars_inf = []
for inf in p.inp:
if not inf in no_dup_procars_inf:
no_dup_procars_inf.append(inf)
p.procars = []
p.pIDs = []
for inf in no_dup_procars_inf:
ii = p.inp.index(inf)
tmp = procar(inf=inf, lsoc=p.soc[ii])
tmp.set_sigma(p.sigma[ii])
tmp.set_nedos(p.nedos[ii])
p.procars.append(tmp)
for ip in range(p.npdos):
ii = no_dup_procars_inf.index(p.inp[ip])
p.pIDs.append(ii)
return p
def plot_dos(p):
'''
'''
dos_total_yshift = np.zeros((p.naxes, p.npros), dtype=int)
for ip in range(p.npdos):
iax = p.ax[ip]
ax = p.axes[iax]
atoms = p.pdos[ip]
kpts = p.kpts[ip]
spd = p.spd[ip]
pid = p.pIDs[ip]
pro = p.procars[pid]
if p.pvisible[ip]:
x, y = pro.get_pdos(atoms=atoms, kpts=kpts, spd=spd)
for ispin in range(pro.get_nspin()):
sign = 1 if ispin == 0 else -1
y *= p.scale[ip]
y += sign * p.yshift[ip]
if ispin == 0:
x = x + p.xshift[ip] - p.zero[pid]
if dos_total_yshift[iax, pid] < p.yshift[ip]:
dos_total_yshift[iax, pid] = p.yshift[ip]
line, im = gradient_fill(
x, y[ispin], ax=ax,
direction=sign,
lw=p.linewidths[ip],
alpha=0.8,
color=p.linecolors[ip],
label=p.label[ip]
)
show_total_dos = np.zeros((p.naxes, p.npros), dtype=bool)
for ip in range(p.npdos):
iax = p.ax[ip]
ax = p.axes[iax]
pid = p.pIDs[ip]
pro = p.procars[pid]
if p.tdos[ip] and (not show_total_dos[iax, pid]):
xt, yt = pro.get_total_dos()
for ispin in range(pro.get_nspin()):
sign = 1 if ispin == 0 else -1
if ispin == 0:
xt -= p.zero[pid]
yt += dos_total_yshift[iax, pid] * sign
show_total_dos[iax, pid] = True
line, im = gradient_fill(
xt, yt[ispin], ax=ax,
direction=sign,
lw=p.tdos_lw[ip],
alpha=0.8,
color=p.tdos_lc[ip],
label=p.tdos_lab[ip]
)
# no pdos specification, plot total dos for each axis, each procar
if p.npdos == 0:
for iax in range(p.naxes):
ax = p.axes[iax]
for pid, pro in enumerate(p.procars):
xt, yt = pro.get_total_dos()
if ispin == 0:
xt -= p.zero[pid]
for ispin in range(pro.get_nspin()):
sign = 1 if ispin == 0 else -1
line, im = gradient_fill(
xt, yt[ispin], ax=ax,
direction=sign,
lw=0.5,
alpha=0.8,
color='k',
label='total'
)
for iax in range(p.naxes):
ax = p.axes[iax]
ax.set_xlim(p.xlim[iax])
ax.set_ylim(p.ylim[iax])
ax.legend(loc=p.legendLoc[iax],
fontsize=p.legendFontsize[iax],
frameon=True,
ncol=p.legendNcols[iax],
# fancybox=True,
framealpha=0.8,
# shadow=True,
)
p.fig.savefig(p.out, dpi=p.dpi)
if not p.quiet:
from subprocess import call
call('feh -xdF {}'.format(p.out).split())
def main(cml):
'''
'''
from time import time
p = parse_cml_arg(cml)
t0 = time()
# initializing the dos figure
p = init_fig(p)
t1 = time()
if not p.quiet:
print "Figure Initialization Completed! Time Used: {:.2f} [sec]".format(t1 - t0)
# dos initialization
p = init_procar(p)
t2 = time()
if not p.quiet:
print "PROCAR Initialization Completed! Time Used: {:.2f} [sec]".format(t2 - t1)
# plotting pdos
plot_dos(p)
############################################################
if __name__ == '__main__':
main(sys.argv[1:])