-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm-ddp-train.py
236 lines (196 loc) · 9.89 KB
/
llm-ddp-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from datetime import timedelta, datetime
import torch
import torch.distributed as dist
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, get_linear_schedule_with_warmup
from datasets import load_dataset
from torch.utils.data import DataLoader
torch.multiprocessing.set_start_method("spawn")
from accelerate import Accelerator, DeepSpeedPlugin
import deepspeed
import random
import numpy as np
import os
from dotenv import load_dotenv
import wandb
import time
from discord_webhook import send_discord_webhook
load_dotenv()
if os.getenv("WANDB_API_KEY") is None:
raise ValueError("API key for wandb is not set")
wandb.login()
MODEL_NAME = "gpt2"
PROMPT = "Once upon a time"
def set_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
def set_dataloder(tokenizer, batch_size=4):
dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
def tokenize_function_with_labels(examples):
inputs = tokenizer( # tokenization for text, set 'input_ids' and 'labels'
examples['text'],
padding = 'max_length',
truncation = True,
max_length = 512
)
inputs["labels"] = inputs["input_ids"].copy() # 'input_ids' as 'labels'
return inputs
dataset = dataset.map(tokenize_function_with_labels, batched=True)
dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
train_dataset = dataset["train"]
print("Train dataset length: ", len(train_dataset))
eval_dataset = dataset["validation"]
print("Eval dataset length: ", len(eval_dataset))
test_dataset = dataset["test"]
print("Test dataset length: ", len(test_dataset))
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
eval_dataloader = DataLoader(eval_dataset, batch_size=batch_size)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size)
return train_dataloader, eval_dataloader, test_dataloader
def set_model(tokenizer):
config = GPT2Config.from_pretrained(MODEL_NAME, output_hidden_states=False)
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME, config=config)
return model
def set_optimizer_scheduler(model, total_steps, learning_rate, warmup_steps):
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, eps=1e-8)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
return optimizer, scheduler
def format_time(elapsed):
elapsed_rounded = int(round(elapsed))
return str(timedelta(seconds=elapsed_rounded))
def train_ddp(batch_size, epochs, learning_rate, warmup_steps, run_name):
# 現在の日時を取得
now = datetime.now()
tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
# 時間と分を取得
hour = now.hour
minute = now.minute
# hhmm形式にフォーマット
hhmm = "{:02d}{:02d}".format(hour, minute)
save_path = f"./output/{run_name}-{hhmm}"
set_seed(42)
try:
deepspeed_plugin = DeepSpeedPlugin(zero_stage=2, gradient_accumulation_steps=1, offload_param_device='cpu')
accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, log_with="wandb")
accelerator.init_trackers(
project_name="llm-train-tutorial",
init_kwargs={"wandb": {"group": run_name, "name": MODEL_NAME + hhmm}},
config={"model_name": MODEL_NAME,"batch_size": batch_size, "epochs": epochs, "learning_rate": learning_rate, "warmup_steps": warmup_steps},
)
table = []
if accelerator.is_main_process:
wandb_run = accelerator.get_tracker("wandb")
send_discord_webhook("Training Started")
train_data_loader, eval_data_loader, test_data_loader = set_dataloder(tokenizer, batch_size=batch_size)
model = set_model(tokenizer)
total_steps = len(train_data_loader) * epochs
optimizer, scheduler = set_optimizer_scheduler(model, total_steps, learning_rate, warmup_steps)
model, optimizer, train_data_loader, eval_data_loader, test_data_loader, scheduler = accelerator.prepare(
model, optimizer, train_data_loader, eval_data_loader, test_data_loader, scheduler
)
for epoch_i in range(epochs):
if accelerator.is_main_process:
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
print('Training...')
t0 = time.time()
total_loss = 0
model.train()
for step, batch in enumerate(train_data_loader):
model.train()
batch = {k: v.to("cuda") for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
total_loss += loss.item()
accelerator.backward(loss)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if step % 300 == 0 and step != 0:
if accelerator.is_main_process:
t1 = time.time()
time_elapsed = format_time(t1 - t0)
print(f" Batch {step} of {len(train_data_loader)} took: {time_elapsed}")
model.eval()
global_step = len(train_data_loader) * epoch_i + step
with torch.no_grad():
tokenized_prompt = tokenizer(PROMPT, return_tensors="pt")
tokenized_prompt = {k: v.to("cuda") for k, v in tokenized_prompt.items()}
sample_outputs = accelerator.unwrap_model(model).generate(
**tokenized_prompt,
max_length=512,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
temperature=1.0,
top_k=50,
do_sample=True,
top_p=0.95,
)
generated_text = tokenizer.batch_decode(sample_outputs, skip_special_tokens=True)
print(generated_text[0])
table.append([epoch_i, global_step, generated_text[0]])
wandb_run.log_table(table_name='generated_text', columns=["epoch", "global_step", "text"], data=table)
if step % 500 == 0 and step != 0:
model.eval()
total_eval_loss = 0
for batch in eval_data_loader:
batch = {k: v.to("cuda") for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
total_eval_loss += loss.item()
avg_eval_loss = total_eval_loss / len(eval_data_loader)
if accelerator.is_main_process:
print(f" Evaluation Loss: {avg_eval_loss}")
accelerator.log({"eval_loss": avg_eval_loss})
model.train()
avg_train_loss = total_loss / len(train_data_loader)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
print("")
print(f"Average training loss: {avg_train_loss}")
accelerator.log({"train_loss": avg_train_loss})
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(save_path, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model))
accelerator.wait_for_everyone()
if accelerator.is_main_process:
print("")
print("Training complete!")
if not os.path.exists("./output/"):
os.makedirs("./output/")
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(save_path, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model))
print("Saved model to", save_path)
print("Runnning evaluation on test dataset")
total_test_loss = 0
model.eval()
for batch in test_data_loader:
batch = {k: v.to("cuda") for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
total_test_loss += loss.item()
avg_test_loss = total_test_loss / len(test_data_loader)
if accelerator.is_main_process:
print(f"Test Loss: {avg_test_loss}")
accelerator.log({"test_loss": avg_test_loss})
except Exception as e:
if accelerator.is_main_process:
send_discord_webhook(f"Error Occured!: {str(e)}")
raise(e)
else:
if accelerator.is_main_process:
send_discord_webhook("Training Finished")
finally:
accelerator.end_training()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=4, help="Batch size for training")
parser.add_argument("--epochs", type=int, default=500, help="Number of epochs to train")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate for training")
parser.add_argument("--warmup_steps", type=int, default=1e4, help="Warmup steps for training")
parser.add_argument("--run_name", type=str, default="llm_train_group", help="Run name for wandb")
args = parser.parse_args()
train_ddp(args.batch_size, args.epochs, args.learning_rate, args.warmup_steps, args.run_name)