-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgps_only.py
415 lines (339 loc) · 14.4 KB
/
gps_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import gym
import DroneEnv
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import regularizers
import numpy as np
import matplotlib.pyplot as plt
import sys
import os
import pickle
import dronekit
from dronekit import LocationGlobalRelative
# np.random.seed(0)
# tf.random.set_seed(0)
if len(sys.argv) > 1:
other_ip = sys.argv[1]
else:
other_ip = '127.0.0.1'
lim_to_changes = 0.0000002
## model_s4
homeLocation = LocationGlobalRelative(-35.363262, 149.165237, 40)
destLoaction = LocationGlobalRelative(-35.360262, 149.165237, 40)
adverseLocation = LocationGlobalRelative(-35.361262, 149.164537, 40)
problem = "drone-v1"
env = gym.make(problem,other_ip = other_ip, lim = lim_to_changes,dest = destLoaction,adverse = adverseLocation,reward_fn=0)
# num_states = env.observation_space.shape[0]
num_states = 3
print("Size of State Space -> {}".format(num_states))
# num_actions = env.action_space.shape[0]
num_actions = 1
print("Size of Action Space -> {}".format(num_actions))
upper_bound = lim_to_changes
lower_bound = -lim_to_changes
print("Max Value of Action -> {}".format(upper_bound))
print("Min Value of Action -> {}".format(lower_bound))
dropped = 0
class OUActionNoise:
def __init__(self, mean, std_deviation, theta=0.15, dt=1e-2, x_initial=None):
self.theta = theta
self.mean = mean
self.std_dev = std_deviation
self.dt = dt
self.x_initial = x_initial
self.reset()
def __call__(self):
x = (
self.x_prev
+ self.theta * (self.mean - self.x_prev) * self.dt
+ self.std_dev * np.sqrt(self.dt) * np.random.normal(size=self.mean.shape)
)
# Store x into x_prev
# Makes next noise dependent on current one
self.x_prev = x
return x
def reset(self):
if self.x_initial is not None:
self.x_prev = self.x_initial
else:
self.x_prev = np.zeros_like(self.mean)
class Buffer:
def __init__(self, buffer_capacity=100000, batch_size=64):
# Number of "experiences" to store at max
self.buffer_capacity = buffer_capacity
# Num of tuples to train on.
self.batch_size = batch_size
self.dropped = 0
# Its tells us num of times record() was called.
self.buffer_counter = 0
# Instead of list of tuples as the exp.replay concept go
# We use different np.arrays for each tuple element
self.state_buffer = np.zeros((self.buffer_capacity, num_states))
self.action_buffer = np.zeros((self.buffer_capacity, num_actions))
self.reward_buffer = np.zeros((self.buffer_capacity, 1))
self.next_state_buffer = np.zeros((self.buffer_capacity, num_states))
# Takes (s,a,r,s') obervation tuple as input
def record(self, obs_tuple):
# Set index to zero if buffer_capacity is exceeded,
# replacing old records
# if obs_tuple[2] == 0:
# if np.random.rand()>0.05:
# self.dropped += 1
# return
index = self.buffer_counter % self.buffer_capacity
self.state_buffer[index] = obs_tuple[0]
self.action_buffer[index] = obs_tuple[1]
self.reward_buffer[index] = obs_tuple[2]
self.next_state_buffer[index] = obs_tuple[3]
self.buffer_counter += 1
# Eager execution is turned on by default in TensorFlow 2. Decorating with tf.function allows
# TensorFlow to build a static graph out of the logic and computations in our function.
# This provides a large speed up for blocks of code that contain many small TensorFlow operations such as this one.
@tf.function
def update(
self, state_batch, action_batch, reward_batch, next_state_batch,
):
# Training and updating Actor & Critic networks.
# See Pseudo Code.
with tf.GradientTape() as tape:
target_actions = target_actor(next_state_batch, training=True)
y = reward_batch + gamma * target_critic(
[next_state_batch, target_actions], training=True
)
critic_value = critic_model([state_batch, action_batch], training=True)
critic_loss = tf.math.reduce_mean(tf.math.square(y - critic_value))
critic_grad = tape.gradient(critic_loss, critic_model.trainable_variables)
critic_optimizer.apply_gradients(
zip(critic_grad, critic_model.trainable_variables)
)
with tf.GradientTape() as tape:
actions = actor_model(state_batch, training=True)
critic_value = critic_model([state_batch, actions], training=True)
# Used `-value` as we want to maximize the value given
# by the critic for our actions
actor_loss = -tf.math.reduce_mean(critic_value)
actor_grad = tape.gradient(actor_loss, actor_model.trainable_variables)
actor_optimizer.apply_gradients(
zip(actor_grad, actor_model.trainable_variables)
)
# We compute the loss and update parameters
def learn(self):
# Get sampling range
record_range = min(self.buffer_counter, self.buffer_capacity)
if record_range ==0:
return
# Randomly sample indices
batch_indices = np.random.choice(record_range, self.batch_size)
# Convert to tensors
state_batch = tf.convert_to_tensor(self.state_buffer[batch_indices])
action_batch = tf.convert_to_tensor(self.action_buffer[batch_indices])
reward_batch = tf.convert_to_tensor(self.reward_buffer[batch_indices])
reward_batch = tf.cast(reward_batch, dtype=tf.float32)
next_state_batch = tf.convert_to_tensor(self.next_state_buffer[batch_indices])
self.update(state_batch, action_batch, reward_batch, next_state_batch)
# This update target parameters slowly
# Based on rate `tau`, which is much less than one.
@tf.function
def update_target(target_weights, weights, tau):
for (a, b) in zip(target_weights, weights):
a.assign(b * tau + a * (1 - tau))
def get_actor():
#a
last_init = tf.random_uniform_initializer(minval=-0.0001, maxval=0.0001)
inputs = layers.Input(shape=(num_states,))
out = layers.Dense(256, activation="relu")(inputs)
out = layers.Dropout(0.3)(out)
out = layers.Dense(256, activation="relu" )(out)
out = layers.Dropout(0.3)(out)
outputs = layers.Dense(1, activation="tanh", kernel_initializer=last_init)(out)
# Keep the outputs within the bound
outputs = outputs * upper_bound
model = tf.keras.Model(inputs, outputs)
return model
def get_critic():
# State as input
state_input = layers.Input(shape=(num_states))
state_out = layers.Dense(16, activation="relu" )(state_input)
state_out = layers.Dense(32, activation="relu")(state_out)
# Action as input
action_input = layers.Input(shape=(num_actions))
action_out = layers.Dense(16, activation="relu" )(action_input)
action_out = layers.Dense(32, activation="relu" )(action_out)
# Both are passed through seperate layer before concatenating
concat = layers.Concatenate()([state_out, action_out])
concat = layers.Dropout(0.4)(concat)
out = layers.Dense(256, activation="relu" )(concat)
out = layers.Dense(256, activation="relu" )(out)
outputs = layers.Dense(1)(out)
# Outputs single value for give state-action
model = tf.keras.Model([state_input, action_input], outputs)
return model
"""
`policy()` returns an action sampled from our Actor network plus some noise for
exploration.
"""
def policy(state, noise_object):
sampled_actions = tf.squeeze(actor_model(state))
noise = noise_object()
# Adding noise to action
sampled_actions = sampled_actions.numpy() + noise
# We make sure action is within bounds
legal_action = sampled_actions
legal_action = np.clip(sampled_actions, lower_bound, upper_bound)
return [np.squeeze(legal_action)]
def policy_gaussian_noise(state, std_dev):
sampled_actions = tf.squeeze(actor_model(state))
sampled_actions = sampled_actions.numpy() + np.random.normal(0,std_dev)
legal_action = np.clip(sampled_actions, lower_bound, upper_bound)
return [np.squeeze(legal_action)]
def policy_gaussian_random(state, std_dev,prob):
if np.random.rand() < prob:
return [np.array(np.random.uniform(low=lower_bound,high=upper_bound))]
sampled_actions = tf.squeeze(actor_model(state))
sampled_actions = sampled_actions.numpy() + np.random.normal(0,std_dev,size=(num_actions))
legal_action = np.clip(sampled_actions, lower_bound, upper_bound)
return [np.squeeze(legal_action)]
def policy_ou_random(state,prob):
if np.random.rand() < prob:
return [np.array(np.random.uniform(low=lower_bound,high=upper_bound))]
sampled_actions = tf.squeeze(actor_model(state))
noise = noise_obj()
sampled_actions = sampled_actions.numpy() + noise
return [np.squeeze(sampled_actions)]
def policy_without_noise(state):
sampled_actions = tf.squeeze(actor_model(state))
sampled_actions = sampled_actions.numpy()
legal_action = np.clip(sampled_actions, lower_bound, upper_bound)
return [np.squeeze(legal_action)]
def loadBuffer(buffer):
tmp = np.loadtxt('state_buffer.txt',delimiter=',')
size = min(buffer.buffer_capacity,tmp.shape[0])
buffer.state_buffer[0:size,:] = tmp
tmp = np.loadtxt('action_buffer.txt',delimiter=',')
buffer.action_buffer[0:size,:] = tmp.reshape((size,1))
tmp = np.loadtxt('reward_buffer.txt',delimiter=',')
buffer.reward_buffer[0:size,:] = tmp.reshape((size,1))
tmp = np.loadtxt('next_state_buffer.txt',delimiter=',')
buffer.next_state_buffer[0:size,:] = tmp
buffer.buffer_counter = size
return buffer
"""
## Training hyperparameters
"""
factor = 1.2
factor = max(0.2,pow(0.9,14))
std_dev = factor * lim_to_changes
noise_obj = OUActionNoise(mean=np.zeros(1),std_deviation=(lim_to_changes*0.8),dt=1)
actor_model = get_actor()
critic_model = get_critic()
target_actor = get_actor()
target_critic = get_critic()
# Making the weights equal initially
target_actor.set_weights(actor_model.get_weights())
target_critic.set_weights(critic_model.get_weights())
# Learning rate for actor-critic models
critic_lr = 0.08
actor_lr = 0.06
critic_optimizer = tf.keras.optimizers.Adam(critic_lr)
actor_optimizer = tf.keras.optimizers.Adam(actor_lr)
total_episodes = 30
# Discount factor for future rewards
gamma = 0.95
# Used to update target networks
tau = 0.05
buffer = Buffer(50000, 64)
# Loading Previousy stored buffer and model weights
buffer = loadBuffer(buffer)
actor_model.load_weights('actor_1.h5')
critic_model.load_weights('critic_1.h5')
target_actor.load_weights('target_actor_1.h5')
target_critic.load_weights('target_critic_1.h5')
"""
Now we implement our main training loop, and iterate over episodes.
We sample actions using `policy()` and train with `learn()` at each time step,
along with updating the Target networks at a rate `tau`.
"""
# To store reward history of each episode
ep_reward_list = []
# To store average reward history of last few episodes
avg_reward_list = []
lst = []
award_file = open('awards.txt','w')
steps_list = []
for ep in range(total_episodes):
prev_state = env.reset()
episodic_reward = 0
logging_file = open('log_actions.txt','w')
steps = 0
while True:
# Uncomment this to see the Actor in action
# But not in a python notebook.
# env.render()
steps += 1
tf_prev_state = tf.expand_dims(tf.convert_to_tensor(prev_state), 0)
action = policy_gaussian_random(tf_prev_state,std_dev,factor)
# action = policy_ou_random(tf_prev_state,factor)
# action = policy_without_noise(tf_prev_state)
# Recieve state and reward from environment.
modif = action[0]
logging_file.write(str(modif) + '\n')
state, reward, done, info = env.step(action)
buffer.record((prev_state, action, reward, state))
episodic_reward += reward
lst.append(reward)
buffer.learn()
update_target(target_actor.variables, actor_model.variables, tau)
update_target(target_critic.variables, critic_model.variables, tau)
# End this episode when `done` is True
if done:
break
prev_state = state
steps_list.append(steps)
ep_reward_list.append(episodic_reward)
award_file.write(str(episodic_reward) + '\n')
actor_model.save_weights("actor_1.h5")
critic_model.save_weights("critic_1.h5")
target_actor.save_weights("target_actor_1.h5")
target_critic.save_weights("target_critic_1.h5")
np.savetxt('state_buffer.txt',buffer.state_buffer[0:buffer.buffer_counter,:],delimiter=',')
np.savetxt('action_buffer.txt',buffer.action_buffer[0:buffer.buffer_counter,:],delimiter=',')
np.savetxt('reward_buffer.txt',buffer.reward_buffer[0:buffer.buffer_counter,:],delimiter=',')
np.savetxt('next_state_buffer.txt',buffer.next_state_buffer[0:buffer.buffer_counter,:],delimiter=',')
np.savetxt('complete_rewards_list.txt',np.array(lst),delimiter=',')
# Mean of last 40 episodes
avg_reward = np.mean(ep_reward_list[-5:])
print("Episode * {} * Avg Reward is ==> {}".format(ep, avg_reward))
avg_reward_list.append(avg_reward)
print(ep_reward_list)
print(steps_list)
logging_file.close()
factor = max(0.2,factor*0.9)
std_dev = factor * lim_to_changes
noise_obj.reset()
env.end_all()
# Plotting graph
# Episodes versus Avg. Rewards
plt.plot(avg_reward_list)
plt.xlabel("Episode")
plt.ylabel("Avg. Epsiodic Reward")
plt.show()
award_file.close()
"""
If training proceeds correctly, the average episodic reward will increase with time.
Feel free to try different learning rates, `tau` values, and architectures for the
Actor and Critic networks.
The Inverted Pendulum problem has low complexity, but DDPG work great on many other
problems.
Another great environment to try this on is `LunarLandingContinuous-v2`, but it will take
more episodes to obtain good results.
"""
# Save the weights
actor_model.save_weights("actor_1.h5")
critic_model.save_weights("critic_1.h5")
target_actor.save_weights("target_actor_1.h5")
target_critic.save_weights("target_critic_1.h5")
np.savetxt('state_buffer.txt',buffer.state_buffer[0:buffer.buffer_counter,:],delimiter=',')
np.savetxt('action_buffer.txt',buffer.action_buffer[0:buffer.buffer_counter,:],delimiter=',')
np.savetxt('reward_buffer.txt',buffer.reward_buffer[0:buffer.buffer_counter,:],delimiter=',')
np.savetxt('next_state_buffer.txt',buffer.next_state_buffer[0:buffer.buffer_counter,:],delimiter=',')
print(ep_reward_list)