-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_transaction_datasets.qmd
221 lines (153 loc) · 4.95 KB
/
generate_transaction_datasets.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
title: "Generate Synthetic Transaction Datasets"
author: "Mick Cooney <[email protected]>"
editor: source
execute:
message: false
warning: false
error: false
format:
html:
light: superhero
dark: darkly
anchor-sections: true
embed-resources: true
number-sections: true
smooth-scroll: true
toc: true
toc-depth: 3
toc-location: left
code-fold: true
code-summary: "Show code"
---
```{r knit_opts}
#| include: false
library(conflicted)
library(tidyverse)
library(scales)
library(magrittr)
library(rlang)
library(purrr)
library(glue)
library(stringi)
library(tidyquant)
source("lib_utils.R")
source("lib_btyd.R")
conflict_lst <- resolve_conflicts(
c("xml2", "magrittr", "rlang", "dplyr", "readr", "purrr", "ggplot2")
)
options(
width = 80L,
warn = 1,
mc.cores = parallelly::availableCores()
)
set.seed(42)
```
In this workbook we use some initial inputs to generate synthetic data to help
us explore various customer CLV models.
In each instance we will create 50,000 customers, as that should be more than
enough for any application.
Should we need a smaller customer count, we can take a subsample from this
dataset.
```{r set_n_customers}
#| echo: true
n_customers <- 5000
first_tnx_date <- as.Date("2020-01-01")
final_tnx_date <- as.Date("2023-01-01")
```
# Generate Short Timeframe 50K Synthetic Cohort Data
We now repeat this exercise, but rather than using the new customer data from
the transaction dataset, we also create a synthetic set of 'new customers' and
generate a transaction dataset based on that.
We use a short time frame from the data, spanning two years, and construct all
customers and transactions within that timeframe.
```{r generate_shortframe_synthetic_cohort}
#| echo: true
synthdata_shortframe_cohort_tbl <- generate_customer_cohort_data(
n_customers = n_customers,
first_date = first_tnx_date,
last_date = final_tnx_date,
id_prefix = "SFC"
)
synthdata_shortframe_cohort_tbl |> glimpse()
```
Now that we have generated our cohort data, we move on to generating our
transaction data based on the PNBD model.
```{r calculate_shortframe_synth_customer_data}
#| echo: true
pnbd_params_lst <- list(
mu_mn = 0.10,
mu_cv = 1.00,
lambda_mn = 0.25,
lambda_cv = 1.00,
amt_hiermn = 100.00,
amt_hiercv = 1.00,
amt_custcv = 1.00
)
synthdata_shortframe_simparams_tbl <- synthdata_shortframe_cohort_tbl |>
generate_pnbd_customer_simulation_params(
params_lst = pnbd_params_lst
)
synthdata_shortframe_transactions_tbl <- synthdata_shortframe_simparams_tbl |>
generate_pnbd_customer_transaction_data(final_tnx_date = final_tnx_date) |>
generate_transaction_metadata()
synthdata_shortframe_transactions_tbl |> glimpse()
```
## Write Data to Disk
We now write this data to disk.
```{r write_synth_shortframe_data_disk}
#| echo: true
synthdata_shortframe_cohort_tbl |> write_rds("data/synthdata_shortframe_cohort_tbl.rds")
synthdata_shortframe_simparams_tbl |> write_rds("data/synthdata_shortframe_simparams_tbl.rds")
synthdata_shortframe_transactions_tbl |> write_rds("data/synthdata_shortframe_transactions_tbl.rds")
```
# Generate Long Time-frame 50K Synthetic Cohort Data
We now repeat the data synthesis but for a much longer period of time, so
that the censoring effects of the observation time are less apparent in the
dataset.
```{r generate_longframe_synth_cohort}
#| echo: true
first_tnx_date <- as.Date("2010-01-01")
final_tnx_date <- as.Date("2023-01-01")
synthdata_longframe_cohort_tbl <- generate_customer_cohort_data(
n_customers = n_customers,
first_date = first_tnx_date,
last_date = final_tnx_date,
id_prefix = "LFC"
)
synthdata_longframe_cohort_tbl |> glimpse()
```
```{r calculate_longframe_synth_customer_data}
#| echo: true
pnbd_params_lst <- list(
mu_mn = 0.10,
mu_cv = 1.00,
lambda_mn = 0.25,
lambda_cv = 1.00,
amt_hiermn = 100.00,
amt_hiercv = 1.00,
amt_custcv = 1.00
)
synthdata_longframe_simparams_tbl <- synthdata_longframe_cohort_tbl |>
generate_pnbd_customer_simulation_params(
params_lst = pnbd_params_lst
)
synthdata_longframe_transactions_tbl <- synthdata_longframe_simparams_tbl |>
generate_pnbd_customer_transaction_data(final_tnx_date = final_tnx_date) |>
generate_transaction_metadata()
synthdata_longframe_transactions_tbl |> glimpse()
```
## Write Data to Disk
We now write this data to disk.
```{r write_longframe_synth_data_disk}
#| echo: true
synthdata_longframe_cohort_tbl |> write_rds("data/synthdata_longframe_cohort_tbl.rds")
synthdata_longframe_simparams_tbl |> write_rds("data/synthdata_longframe_simparams_tbl.rds")
synthdata_longframe_transactions_tbl |> write_rds("data/synthdata_longframe_transactions_tbl.rds")
```
# R Environment {.unnumbered}
```{r show_session_info, echo=TRUE, message=TRUE}
options(width = 120L)
sessioninfo::session_info()
options(width = 80L)
```