forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compress.cc
338 lines (293 loc) · 12 KB
/
compress.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
* Copyright (C) 2016-present ScyllaDB
*/
/*
* SPDX-License-Identifier: AGPL-3.0-or-later
*/
#include <lz4.h>
#include <zlib.h>
#include <snappy-c.h>
#include "compress.hh"
#include "utils/class_registrator.hh"
const sstring compressor::namespace_prefix = "org.apache.cassandra.io.compress.";
class lz4_processor: public compressor {
public:
using compressor::compressor;
size_t uncompress(const char* input, size_t input_len, char* output,
size_t output_len) const override;
size_t compress(const char* input, size_t input_len, char* output,
size_t output_len) const override;
size_t compress_max_size(size_t input_len) const override;
};
class snappy_processor: public compressor {
public:
using compressor::compressor;
size_t uncompress(const char* input, size_t input_len, char* output,
size_t output_len) const override;
size_t compress(const char* input, size_t input_len, char* output,
size_t output_len) const override;
size_t compress_max_size(size_t input_len) const override;
};
class deflate_processor: public compressor {
public:
using compressor::compressor;
size_t uncompress(const char* input, size_t input_len, char* output,
size_t output_len) const override;
size_t compress(const char* input, size_t input_len, char* output,
size_t output_len) const override;
size_t compress_max_size(size_t input_len) const override;
};
compressor::compressor(sstring name)
: _name(std::move(name))
{}
std::set<sstring> compressor::option_names() const {
return {};
}
std::map<sstring, sstring> compressor::options() const {
return {};
}
compressor::ptr_type compressor::create(const sstring& name, const opt_getter& opts) {
if (name.empty()) {
return {};
}
qualified_name qn(namespace_prefix, name);
for (auto& c : { lz4, snappy, deflate }) {
if (c->name() == static_cast<const sstring&>(qn)) {
return c;
}
}
return compressor_registry::create(qn, opts);
}
shared_ptr<compressor> compressor::create(const std::map<sstring, sstring>& options) {
auto i = options.find(compression_parameters::SSTABLE_COMPRESSION);
if (i != options.end() && !i->second.empty()) {
return create(i->second, [&options](const sstring& key) -> opt_string {
auto i = options.find(key);
if (i == options.end()) {
return std::nullopt;
}
return { i->second };
});
}
return {};
}
thread_local const shared_ptr<compressor> compressor::lz4 = ::make_shared<lz4_processor>(namespace_prefix + "LZ4Compressor");
thread_local const shared_ptr<compressor> compressor::snappy = ::make_shared<snappy_processor>(namespace_prefix + "SnappyCompressor");
thread_local const shared_ptr<compressor> compressor::deflate = ::make_shared<deflate_processor>(namespace_prefix + "DeflateCompressor");
const sstring compression_parameters::SSTABLE_COMPRESSION = "sstable_compression";
const sstring compression_parameters::CHUNK_LENGTH_KB = "chunk_length_in_kb";
const sstring compression_parameters::CHUNK_LENGTH_KB_ERR = "chunk_length_kb";
const sstring compression_parameters::CRC_CHECK_CHANCE = "crc_check_chance";
compression_parameters::compression_parameters()
: compression_parameters(compressor::lz4)
{}
compression_parameters::~compression_parameters()
{}
compression_parameters::compression_parameters(compressor_ptr c)
: _compressor(std::move(c))
{}
compression_parameters::compression_parameters(const std::map<sstring, sstring>& options) {
_compressor = compressor::create(options);
validate_options(options);
auto chunk_length = options.find(CHUNK_LENGTH_KB) != options.end() ?
options.find(CHUNK_LENGTH_KB) : options.find(CHUNK_LENGTH_KB_ERR);
if (chunk_length != options.end()) {
try {
_chunk_length = std::stoi(chunk_length->second) * 1024;
} catch (const std::exception& e) {
throw exceptions::syntax_exception(sstring("Invalid integer value ") + chunk_length->second + " for " + chunk_length->first);
}
}
auto crc_chance = options.find(CRC_CHECK_CHANCE);
if (crc_chance != options.end()) {
try {
_crc_check_chance = std::stod(crc_chance->second);
} catch (const std::exception& e) {
throw exceptions::syntax_exception(sstring("Invalid double value ") + crc_chance->second + "for " + CRC_CHECK_CHANCE);
}
}
}
void compression_parameters::validate() {
if (_chunk_length) {
auto chunk_length = _chunk_length.value();
if (chunk_length <= 0) {
throw exceptions::configuration_exception(
fmt::format("Invalid negative or null for {}/{}", CHUNK_LENGTH_KB, CHUNK_LENGTH_KB_ERR));
}
// _chunk_length must be a power of two
if (chunk_length & (chunk_length - 1)) {
throw exceptions::configuration_exception(
fmt::format("{}/{} must be a power of 2.", CHUNK_LENGTH_KB, CHUNK_LENGTH_KB_ERR));
}
}
if (_crc_check_chance && (_crc_check_chance.value() < 0.0 || _crc_check_chance.value() > 1.0)) {
throw exceptions::configuration_exception(sstring(CRC_CHECK_CHANCE) + " must be between 0.0 and 1.0.");
}
}
std::map<sstring, sstring> compression_parameters::get_options() const {
if (!_compressor) {
return std::map<sstring, sstring>();
}
auto opts = _compressor->options();
opts.emplace(compression_parameters::SSTABLE_COMPRESSION, _compressor->name());
if (_chunk_length) {
opts.emplace(sstring(CHUNK_LENGTH_KB), std::to_string(_chunk_length.value() / 1024));
}
if (_crc_check_chance) {
opts.emplace(sstring(CRC_CHECK_CHANCE), std::to_string(_crc_check_chance.value()));
}
return opts;
}
bool compression_parameters::operator==(const compression_parameters& other) const {
return _compressor == other._compressor
&& _chunk_length == other._chunk_length
&& _crc_check_chance == other._crc_check_chance;
}
bool compression_parameters::operator!=(const compression_parameters& other) const {
return !(*this == other);
}
void compression_parameters::validate_options(const std::map<sstring, sstring>& options) {
// currently, there are no options specific to a particular compressor
static std::set<sstring> keywords({
sstring(SSTABLE_COMPRESSION),
sstring(CHUNK_LENGTH_KB),
sstring(CHUNK_LENGTH_KB_ERR),
sstring(CRC_CHECK_CHANCE),
});
std::set<sstring> ckw;
if (_compressor) {
ckw = _compressor->option_names();
}
for (auto&& opt : options) {
if (!keywords.contains(opt.first) && !ckw.contains(opt.first)) {
throw exceptions::configuration_exception(format("Unknown compression option '{}'.", opt.first));
}
}
}
size_t lz4_processor::uncompress(const char* input, size_t input_len,
char* output, size_t output_len) const {
// We use LZ4_decompress_safe(). According to the documentation, the
// function LZ4_decompress_fast() is slightly faster, but maliciously
// crafted compressed data can cause it to overflow the output buffer.
// Theoretically, our compressed data is created by us so is not malicious
// (and accidental corruption is avoided by the compressed-data checksum),
// but let's not take that chance for now, until we've actually measured
// the performance benefit that LZ4_decompress_fast() would bring.
// Cassandra's LZ4Compressor prepends to the chunk its uncompressed length
// in 4 bytes little-endian (!) order. We don't need this information -
// we already know the uncompressed data is at most the given chunk size
// (and usually is exactly that, except in the last chunk). The advance
// knowledge of the uncompressed size could be useful if we used
// LZ4_decompress_fast(), but we prefer LZ4_decompress_safe() anyway...
input += 4;
input_len -= 4;
auto ret = LZ4_decompress_safe(input, output, input_len, output_len);
if (ret < 0) {
throw std::runtime_error("LZ4 uncompression failure");
}
return ret;
}
size_t lz4_processor::compress(const char* input, size_t input_len,
char* output, size_t output_len) const {
if (output_len < LZ4_COMPRESSBOUND(input_len) + 4) {
throw std::runtime_error("LZ4 compression failure: length of output is too small");
}
// Write input_len (32-bit data) to beginning of output in little-endian representation.
output[0] = input_len & 0xFF;
output[1] = (input_len >> 8) & 0xFF;
output[2] = (input_len >> 16) & 0xFF;
output[3] = (input_len >> 24) & 0xFF;
#ifdef HAVE_LZ4_COMPRESS_DEFAULT
auto ret = LZ4_compress_default(input, output + 4, input_len, LZ4_compressBound(input_len));
#else
auto ret = LZ4_compress(input, output + 4, input_len);
#endif
if (ret == 0) {
throw std::runtime_error("LZ4 compression failure: LZ4_compress() failed");
}
return ret + 4;
}
size_t lz4_processor::compress_max_size(size_t input_len) const {
return LZ4_COMPRESSBOUND(input_len) + 4;
}
size_t deflate_processor::uncompress(const char* input,
size_t input_len, char* output, size_t output_len) const {
z_stream zs;
zs.zalloc = Z_NULL;
zs.zfree = Z_NULL;
zs.opaque = Z_NULL;
zs.avail_in = 0;
zs.next_in = Z_NULL;
if (inflateInit(&zs) != Z_OK) {
throw std::runtime_error("deflate uncompression init failure");
}
// yuck, zlib is not const-correct, and also uses unsigned char while we use char :-(
zs.next_in = reinterpret_cast<unsigned char*>(const_cast<char*>(input));
zs.avail_in = input_len;
zs.next_out = reinterpret_cast<unsigned char*>(output);
zs.avail_out = output_len;
auto res = inflate(&zs, Z_FINISH);
inflateEnd(&zs);
if (res == Z_STREAM_END) {
return output_len - zs.avail_out;
} else {
throw std::runtime_error("deflate uncompression failure");
}
}
size_t deflate_processor::compress(const char* input,
size_t input_len, char* output, size_t output_len) const {
z_stream zs;
zs.zalloc = Z_NULL;
zs.zfree = Z_NULL;
zs.opaque = Z_NULL;
zs.avail_in = 0;
zs.next_in = Z_NULL;
if (deflateInit(&zs, Z_DEFAULT_COMPRESSION) != Z_OK) {
throw std::runtime_error("deflate compression init failure");
}
zs.next_in = reinterpret_cast<unsigned char*>(const_cast<char*>(input));
zs.avail_in = input_len;
zs.next_out = reinterpret_cast<unsigned char*>(output);
zs.avail_out = output_len;
auto res = ::deflate(&zs, Z_FINISH);
deflateEnd(&zs);
if (res == Z_STREAM_END) {
return output_len - zs.avail_out;
} else {
throw std::runtime_error("deflate compression failure");
}
}
size_t deflate_processor::compress_max_size(size_t input_len) const {
z_stream zs;
zs.zalloc = Z_NULL;
zs.zfree = Z_NULL;
zs.opaque = Z_NULL;
zs.avail_in = 0;
zs.next_in = Z_NULL;
if (deflateInit(&zs, Z_DEFAULT_COMPRESSION) != Z_OK) {
throw std::runtime_error("deflate compression init failure");
}
auto res = deflateBound(&zs, input_len);
deflateEnd(&zs);
return res;
}
size_t snappy_processor::uncompress(const char* input, size_t input_len,
char* output, size_t output_len) const {
if (snappy_uncompress(input, input_len, output, &output_len)
== SNAPPY_OK) {
return output_len;
} else {
throw std::runtime_error("snappy uncompression failure");
}
}
size_t snappy_processor::compress(const char* input, size_t input_len,
char* output, size_t output_len) const {
auto ret = snappy_compress(input, input_len, output, &output_len);
if (ret != SNAPPY_OK) {
throw std::runtime_error("snappy compression failure: snappy_compress() failed");
}
return output_len;
}
size_t snappy_processor::compress_max_size(size_t input_len) const {
return snappy_max_compressed_length(input_len);
}