-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathzorn.lean
193 lines (161 loc) · 8.15 KB
/
zorn.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
-- https://proofwiki.org/wiki/Axiom_of_Choice_Implies_Zorn%27s_Lemma/Proof_1
universe u
instance set.partial_order {α} : partial_order (set α) :=
{ le := (⊆),
le_refl := λ A z, id,
le_trans := λ A B C hab hbc z hz, hbc (hab hz),
le_antisymm := λ A B hab hba, funext $ λ z, propext ⟨@hab z, @hba z⟩ }
local attribute [instance] classical.prop_decidable
namespace zorn
variables {α : Type u} (r : α → α → Prop)
inductive trichotomy (A B) : Prop
| inl (H : r A B) : trichotomy
| eq (H : A = B) : trichotomy
| inr (H : r B A) : trichotomy
theorem trichotomy.symm {r : α → α → Prop} {A B}
(H : trichotomy r A B) :
trichotomy r B A :=
trichotomy.cases_on H trichotomy.inr (λ H, trichotomy.eq r H.symm) trichotomy.inl
def chains : set (set α) :=
{ C | ∀ A ∈ C, ∀ B ∈ C, trichotomy r A B }
theorem chains.empty : ∅ ∈ chains r :=
λ _, false.elim
theorem chains.insert {C x} (H1 : C ∈ chains r) (H2 : ∀ y ∈ C, trichotomy r x y) :
insert x C ∈ chains r :=
λ A HA B HB, or.cases_on HA
(assume HA : A = x, or.cases_on HB
(assume HB : B = x, trichotomy.eq r $ HA.trans HB.symm)
(assume HB : B ∈ C, HA.symm ▸ H2 B HB))
(assume HA : A ∈ C, or.cases_on HB
(assume HB : B = x, trichotomy.symm $ HB.symm ▸ H2 A HA)
(assume HB : B ∈ C, H1 A HA B HB))
theorem chains.union {C} (H1 : C ⊆ chains r) (H2 : C ∈ @chains (set α) (⊆)) :
{ A | ∃ t ∈ C, A ∈ t } ∈ chains r :=
λ A ⟨t, ht1, ht2⟩ B ⟨u, hu1, hu2⟩, trichotomy.cases_on (H2 t ht1 u hu1)
(λ H3, (H1 hu1) _ (H3 ht2) _ hu2)
(λ H3, (H1 ht1) A ht2 B (H3.symm ▸ hu2))
(λ H3, (H1 ht1) _ ht2 _ (H3 hu2))
def extensions (A) : set α :=
{ x | insert x A ∈ chains r }
noncomputable def succ (A : set α) : set α :=
if H : ∃ x, x ∈ extensions r A \ A then insert (classical.some H) A else A
@[elab_as_eliminator] noncomputable def succ.rec {C : set α → set α → Sort*}
(H1 : ∀ A, ∀ x ∈ extensions r A \ A, C A (insert x A))
(H2 : ∀ A, extensions r A ⊆ A → C A A)
(A : set α) : C A (succ r A) :=
if H : ∃ x, x ∈ extensions r A \ A then
have succ r A = insert (classical.some H) A, from dif_pos H,
eq.drec_on this.symm $ H1 _ (classical.some H) (classical.some_spec H)
else
have succ r A = A, from dif_neg H,
eq.drec_on this.symm $ H2 A $ λ z hz1,
classical.by_contradiction $ λ hz2, H ⟨z, hz1, hz2⟩
@[elab_as_eliminator] noncomputable def succ.rec_on {C : set α → set α → Sort*}
(A : set α)
(H1 : ∀ A, ∀ x ∈ extensions r A \ A, C A (insert x A))
(H2 : ∀ A, extensions r A ⊆ A → C A A) :
C A (succ r A) :=
succ.rec r H1 H2 A
theorem succ.mem (A : set α) (x) (H1 : insert x A ∈ chains r) (H2 : x ∉ A) :
∃ x, x ∈ extensions r A ∧ x ∉ A ∧ succ r A = insert x A :=
have H : ∃ x, x ∈ extensions r A \ A := ⟨x, H1, H2⟩,
⟨_, and.assoc.1 ⟨classical.some_spec H, dif_pos H⟩⟩
theorem succ.cases (A : set α) :
(∃ x, x ∉ A ∧ x ∈ extensions r A ∧ succ r A = insert x A) ∨ succ r A = A :=
@succ.rec_on α _ (λ t u, (∃ x, x ∉ t ∧ x ∈ extensions r t ∧ u = insert x t) ∨ u = t) A
(λ A x hx, or.inl ⟨x, hx.2, hx.1, rfl⟩) (λ _ _, or.inr rfl)
theorem succ.subset {A : set α} : A ⊆ succ r A :=
succ.rec_on r A
(λ t A H, show t ⊆ insert A t, from λ z, or.inr)
(λ t H z, id)
theorem chains.succ {A : set α} : A ∈ chains r → succ r A ∈ chains r :=
@succ.rec_on α _ (λ t u, t ∈ chains r → u ∈ chains r) A
(λ t X HX H, HX.1) (λ _ _, id)
theorem succ.eq_or_eq_of_subset_of_subset (A : set α) :
∀ B, A ⊆ B → B ⊆ succ r A → A = B ∨ B = succ r A :=
@succ.rec_on α _ (λ t u, ∀ B, t ⊆ B → B ⊆ u → t = B ∨ B = u) A
(λ A x hx B HAB HBA, classical.by_cases
(assume h : x ∈ B, or.inr $ le_antisymm HBA $ λ z hz, or.cases_on hz
(λ hz1, hz1.symm ▸ h) (@HAB z))
(assume h : x ∉ B, or.inl $ le_antisymm HAB $ λ z hz, or.cases_on (HBA hz)
(λ hz1, false.elim $ h $ hz1 ▸ hz) id))
(λ _ _ _ HBC HCB, or.inl $ le_antisymm HBC HCB)
inductive tower : set (set α)
| succ : ∀ {A}, tower A → tower (succ r A)
| chain : ∀ {C}, C ⊆ chains r → C ∈ @chains (set α) (⊆) →
(∀ A ∈ C, tower A) → tower { A | ∃ t ∈ C, A ∈ t }
theorem tower.empty : ∅ ∈ tower r :=
have H : { A | ∃ t ∈ (∅ : set (set α)), A ∈ t } = ∅,
from le_antisymm (λ _ ⟨_, H, _⟩, H) (λ _, false.elim),
H ▸ tower.chain (λ _, false.elim) (λ _, false.elim) (λ _, false.elim)
theorem tower.subset_chains : tower r ⊆ chains r :=
λ A HA, tower.rec_on HA
(λ A HA, chains.succ r)
(λ C HC1 HC2 HC3 ih, chains.union r HC1 HC2)
/-- TLDR: proof by heavy induction -/
theorem tower.chains : tower r ∈ @chains (set α) (⊆) :=
λ A HA, tower.rec_on HA
(λ C HC ih1 A HA, suffices A ⊆ C ∨ succ r C ⊆ A,
from or.cases_on this (λ h, trichotomy.inr $ λ z hz, succ.subset r $ h hz) trichotomy.inl,
tower.rec_on HA
(λ A HA ih2, or.cases_on ih2
(assume h1 : A ⊆ C, trichotomy.cases_on (ih1 (succ r A) (tower.succ HA))
(assume h2 : C ⊆ succ r A, or.cases_on (succ.eq_or_eq_of_subset_of_subset r A C h1 h2)
(assume h3 : A = C, or.inr $ λ _, h3 ▸ id)
(assume h3 : C = succ r A, or.inl $ λ _, h3 ▸ id))
(assume h2 : C = succ r A, or.inl $ λ _, h2 ▸ id)
or.inl)
(assume h1 : succ r C ⊆ A, or.inr $ λ z hz, succ.subset r $ h1 hz))
(λ D HD1 HD2 HD3 ih2, trichotomy.cases_on (ih1 _ (tower.chain HD1 HD2 HD3))
(λ h1, have H1 : C ⊆ {A : α | ∃ (t : set α) (H : t ∈ D), A ∈ t} ∩ succ r C,
from λ z hz, ⟨h1 hz, succ.subset r hz⟩,
have H2 : {A : α | ∃ (t : set α) (H : t ∈ D), A ∈ t} ∩ succ r C ⊆ succ r C,
from λ _, and.right,
or.cases_on (succ.eq_or_eq_of_subset_of_subset r _ _ H1 H2)
(λ h2, or.cases_on (succ.cases r C)
(λ ⟨x, hx1, hx2, hx3⟩, or.inl $ λ z ⟨t, ht1, ht2⟩,
or.cases_on (ih2 t ht1) (λ h3, h3 ht2)
(λ h3, have H3 : x ∈ succ r C, from hx3.symm ▸ or.inl rfl,
false.elim $ hx1 $ h2.symm ▸ ⟨⟨t, ht1, h3 H3⟩, H3⟩))
(λ h3, h3.symm ▸ or.inr h1))
(λ h2, or.inr $ h2 ▸ λ _, and.left))
(λ h1, or.inl $ λ _, h1 ▸ id)
or.inl))
(λ C HC1 HC2 HC3 ih B HB, classical.by_cases
(assume h : ∃ A ∈ C, B ⊆ A, let ⟨A, HA1, HA2⟩ := h in
trichotomy.inr $ λ z hz, ⟨A, HA1, HA2 hz⟩)
(assume h : ¬∃ A ∈ C, B ⊆ A, trichotomy.inl $ λ z ⟨t, ht1, ht2⟩,
trichotomy.cases_on (ih t ht1 B HB)
(assume H : t ⊆ B, H ht2)
(assume H : t = B, H ▸ ht2)
(assume H : B ⊆ t, false.elim $ h ⟨t, ht1, H⟩)))
def fixed : set α :=
{A : α | ∃ t ∈ tower r, A ∈ t}
theorem fixed.tower : fixed r ∈ tower r :=
tower.chain (tower.subset_chains r) (tower.chains r) (λ A, id)
theorem fixed.succ_tower : succ r (fixed r) ∈ tower r :=
tower.succ (fixed.tower r)
theorem fixed.fixed : succ r (fixed r) = fixed r :=
le_antisymm (λ z hz, ⟨succ r (fixed r), fixed.succ_tower r, hz⟩) $
λ z hz, succ.subset r hz
theorem fixed.chains : fixed r ∈ chains r :=
chains.union r (tower.subset_chains r) (tower.chains r)
theorem zorn.aux {M} (HM : ∀ x ∈ fixed r, r x M)
(trans : ∀ {a b c}, r a b → r b c → r a c) :
∀ A, r M A → r A M :=
λ A HA, HM A (classical.by_contradiction $ λ H,
let ⟨y, hy1, hy2, hy3⟩ := succ.mem r (fixed r) A
(chains.insert r (fixed.chains r) $ λ y hy,
trichotomy.inr $ trans (HM y hy) HA) H in
hy2 $ (fixed.fixed r) ▸ hy3.symm ▸ or.inl rfl)
theorem zorn [HN : nonempty α] [partial_order α]
(H : ∀ C ∈ @chains α (≤), ∀ y ∈ C, ∃ M, ∀ x ∈ C, x ≤ M) :
∃ M : α, ∀ A, M ≤ A → M = A :=
nonempty.elim HN $ λ X,
let ⟨x, hx1, hx2, hx3⟩ := succ.mem (≤) ∅ X
(chains.insert (≤) (chains.empty (≤)) (λ _, false.elim)) id in
let ⟨M, HM⟩ := H (fixed (≤)) (fixed.chains (≤)) x
⟨insert x ∅, hx3 ▸ tower.succ (tower.empty (≤)), or.inl rfl⟩ in
⟨M, λ A HA, le_antisymm HA $
zorn.aux (≤) HM (λ _ _ _, le_trans) A HA⟩
end zorn