forked from efabless/caravel_board
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnucleo_api.py
291 lines (231 loc) · 7.8 KB
/
nucleo_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from machine import Pin
import time
from flash import flash, erase
from i2c import *
import sys
import pyb
def accurate_delay(delay):
tm = time.ticks_us()
tm_add = time.ticks_add(tm, int(delay * 1000))
while time.ticks_diff(tm_add, time.ticks_us()) > 0:
pass
return
class Gpio:
def __init__(self):
self.array = []
self.fail_count = []
self.failed = False
self.init_array()
self.init_fail_count()
def get_fail_count(self, channel):
return self.fail_count[channel]
def init_fail_count(self):
for i in range(0, 19):
self.fail_count.append(0)
def increment_fail_count(self, channel):
self.fail_count[channel] = self.fail_count[channel] + 1
def reset_fail_count(self, channel):
self.fail_count[channel] = 0
def init_array(self):
for i in range(0, 19):
if i == 0:
self.array.append("H_NONE")
else:
self.array.append("H_INDEPENDENT")
def gpio_failed(self):
self.failed = True
def get_gpio_failed(self):
return self.failed
def set_config(self, channel, config):
self.array[channel] = config
def get_config(self, channel):
return self.array[channel]
class Dio:
def __init__(self, channel, state=False):
self.channel = channel
self.pin = None
self.state = self.set_state(state)
def get_value(self):
val = self.pin.value()
if val:
return True
else:
return False
def set_state(self, state):
if state:
self.pin = Pin(self.channel, Pin.OUT)
else:
self.pin = Pin(self.channel, Pin.IN)
def set_value(self, value):
if value:
self.pin.value(1)
else:
self.pin.value(0)
def send_pulses(self, num_pulses):
for i in range(0, num_pulses):
self.set_value(1)
accurate_delay(25)
self.set_value(0)
accurate_delay(25)
def turn_io_off(self):
Pin(self.channel).off()
class Test:
def __init__(
self, test_name=None, passing_criteria=[], voltage=1.6, sram=1, config_mode=True
):
self.rstb = Dio("MR", True)
# self.gpio_mgmt_in = Dio("IO_0", False)
self.gpio_mgmt_in = Dio("IO_37", False)
if config_mode:
# self.gpio_mgmt_out = Dio("IO_37", True)
self.gpio_mgmt_out = Dio("IO_0", True)
self.test_name = test_name
self.voltage = voltage
self.sram = sram
self.passing_criteria = passing_criteria
self.supply = ProgSupply()
self.en_1v8 = Pin("EN_VOUT1", mode=Pin.OUT, value=1)
self.en_3v3 = Pin("EN_VOUT2", mode=Pin.OUT, value=1)
def receive_packet(self, num_pulses):
pulses = 0
io_pulse = 0
self.gpio_mgmt_in.set_state(False)
timeout = time.time() + 10
state = 0
num_trans = num_pulses * 2
while 1:
val = self.gpio_mgmt_in.get_value()
if val != state:
io_pulse = io_pulse + 1
state = val
if io_pulse == num_trans:
pulses = num_pulses
break
if time.time() >= timeout:
return 0
return pulses
def send_increment(self):
self.gpio_mgmt_out.set_state(True)
self.gpio_mgmt_out.send_pulses(4)
def send_reset(self):
self.gpio_mgmt_out.set_state(True)
self.gpio_mgmt_out.send_pulses(2)
def apply_reset(self):
# print(" applying reset on channel 0 device 1")
self.rstb.set_value(0)
def release_reset(self):
# print(" releasing reset on channel 0 device 1")
self.rstb.set_value(1)
def flash(self, hex_file):
# erase() - no longer needed - included in flash
try:
flash(f"{hex_file}")
except:
print("*** ERROR - attempting to reflash")
flash(f"{hex_file}", debug=True)
def apply_gpio_high(self):
self.gpio_mgmt_out.set_value(1)
def apply_gpio_low(self):
self.gpio_mgmt_out.set_value(0)
def powerup_sequence(self):
self.en_3v3.off()
self.en_1v8.off()
time.sleep(1)
# Keep 3.3V supply at 3.3V
self.supply.write_3v3(0x3A)
# Note:
# Potentiometer is MCP4661 and has 10k ohms in
# 257 steps = 38.9 ohms/step.
# LDO is MIC2211, which has an output equal to
# R1 = R2 * (Vout / 1.25 - 1)
# Where R1 is between Vout and Adj and
# R2 is between Adj and ground.
# The caravel board has R1 = 360 and
# R2 = 5k // (500 + potentiometer value)
R2 = 360 / ((self.voltage / 1.25) - 1)
Rpot = (1 / (1 / R2 - 1 / 5000)) - 500
P = Rpot / 38.911
Pval = int(P)
# print('Writing ' + str(Pval) + ' to potentiometer.')
self.supply.write_1v8(Pval)
time.sleep(1)
self.en_1v8.on()
self.en_3v3.on()
time.sleep(1)
def change_power(self):
# Keep 3.3V supply at 3.3V
self.supply.write_3v3(0x3A)
R2 = 360 / ((self.voltage / 1.25) - 1)
Rpot = (1 / (1 / R2 - 1 / 5000)) - 500
P = Rpot / 38.911
Pval = int(P)
self.supply.write_1v8(Pval)
time.sleep(1)
def turn_off_devices(self):
self.en_1v8.off()
self.en_3v3.off()
time.sleep(1)
def turn_off_ios(self):
for i in range(38):
Dio(f"IO_{i}").turn_io_off()
def release_pins(self):
for i in range(38):
Dio(f"IO_{i}")
class ProgSupply:
def __init__(self):
self.scl = Pin("I2C2_SCL", mode=Pin.OPEN_DRAIN, pull=Pin.PULL_UP, value=1)
self.sda = Pin("I2C2_SDA", mode=Pin.OPEN_DRAIN, pull=Pin.PULL_UP, value=1)
self.i2c = I2C(scl=self.scl, sda=self.sda)
self.i2c.init()
def read_1v8(self):
self.i2c.write_byte(0x50, start=True, stop=False)
self.i2c.write_byte(0x0C, start=False, stop=False)
self.i2c.write_byte(0x51, start=True, stop=False)
value = self.i2c.read_byte(ack=True, stop=False) << 8
value |= self.i2c.read_byte(ack=False, stop=True)
return value
def write_1v8(self, value):
self.i2c.write_byte(0x50, start=True, stop=False)
self.i2c.write_byte(0x10 & value >> 8, start=False, stop=False)
ack = self.i2c.write_byte(value & 0xFF, start=False, stop=True)
return ack
def read_3v3(self):
self.i2c.write_byte(0x50, start=True, stop=False)
self.i2c.write_byte(0x1C, start=False, stop=False)
self.i2c.write_byte(0x51, start=True, stop=False)
value = self.i2c.read_byte(ack=True, stop=False) << 8
value |= self.i2c.read_byte(ack=False, stop=True)
return value
def write_3v3(self, value):
self.i2c.write_byte(0x50, start=True, stop=False)
self.i2c.write_byte(0x10 | (value >> 8), start=False, stop=False)
ack = self.i2c.write_byte(value & 0xFF, start=False, stop=True)
return ack
class Led:
def __init__(self, pin_name):
self.led = Pin(pin_name, Pin.OUT)
def blink(self, short=1, long=0):
delay_short = 300
delay_long = 600
self.led.off()
for i in range(short):
self.led.on()
pyb.delay(delay_short)
self.led.off()
pyb.delay(delay_short)
if long > 0:
pyb.delay(delay_long)
for i in range(long):
self.led.on()
pyb.delay(delay_long)
self.led.off()
pyb.delay(delay_long)
def on(self):
self.led.on()
def off(self):
self.led.off()
def toggle(self):
if self.led.value():
self.led.off()
else:
self.led.on()