-
-
Notifications
You must be signed in to change notification settings - Fork 99
/
pyUn0.py
1137 lines (994 loc) · 40.4 KB
/
pyUn0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
# -*- coding: utf-8 -*-
# -------------------------
# (c) kelu124
# GPLv3
# -------------------------
import json
import time
import datetime
import os,glob
import sys,re
import spidev
import numpy as np
import matplotlib.pyplot as plt
try:
import RPi.GPIO as GPIO
except:
print "Not loading RPi.GPIO as not on RPi"
gpioexists = False
else:
gpioexists = True
try:
import pyexiv2
except:
print "pyexiv2 does not exist on RPi"
pyexivexists = False
else:
pyexivexists = True
'''Description: Most updated library for the lit3rick platform.
`20190407a`
@todo: improve doc: http://sametmax.com/les-docstrings/
'''
__author__ = "kelu124"
__copyright__ = "Copyright 2018, Kelu124"
__license__ = "GPLv3"
##############
#
# RPI Part
#
##############
class us_spi:
"""
Creates a connection to the board.
Used to acquire signals and store all acquisition parameters.
"""
JSON = {}
spi = spidev.SpiDev()
JSON["firmware_md5"] = "fa6a7560ade6d6b1149b6e78e0de051f"
JSON["firmware_version"] = "e_un0"
JSON["data"] = []
JSON["time"] = unicode(datetime.datetime.now())
JSON["registers"] = {}
JSON["registersHex"] = {}
JSON["experiment"] = {}
JSON["parameters"] = {}
JSON["timings"] = {}
JSON["experiment"]["id"] = str(datetime.datetime.now().strftime("%Y%m%d"))+"a"
JSON["experiment"]["description"] = "na"
JSON["experiment"]["probe"] = "na"
JSON["experiment"]["target"] = "na"
JSON["experiment"]["position"] = "na"
JSON["V"] = "-1"
f_ech = 0
Nacq = 0
LAcq = 0
number_lines = 0
verbose = True
def create_tgc_curve(self, init_value, final_value, curvetype):
"""
Returns an arary with the TGC values, along a 40 values array.
Used afterwards to set fpga registers.
"""
n = 200/5
dac_array = []
for k in range(n+1):
if curvetype:
val = int(init_value+1.0*k*(final_value-init_value)/n)
else:
val = int((final_value-init_value)*k**3/n**3+init_value)
dac_array.append(val)
dac_array[-1] = 0
dac_array[-2] = 0
self.set_tgc_curve(dac_array)
return dac_array, len(dac_array)
def set_timings(self, Pon,PdampOne, PHVneg, Poff, delay_acq, Acq):
"""
Programs the sequence of Pon, Poff, Acquisition.
"""
#t4 = WaitTill # 20us delay before acquisition
# Pon,PdampOne, PHVneg, Poff, delay_acq, Acq
#self.set_pulse_train(t1, t2, t3, t4, t5)
self.set_pulse_train(Pon,PdampOne, PHVneg, Poff, delay_acq, Acq)
# Some figures about the acquisitions now
self.LAcq = (Acq-delay_acq)/1000 #ns to us
self.Nacq = int(self.LAcq * self.f_ech * self.number_lines)
self.JSON["timings"]["t1"] = Pon
self.JSON["timings"]["t2"] = PdampOne
self.JSON["timings"]["t3"] = PHVneg
self.JSON["timings"]["t4"] = Poff
self.JSON["timings"]["t5"] = delay_acq
self.JSON["timings"]["t5"] = Acq
self.JSON["timings"]["NAcq"] = self.Nacq
self.JSON["timings"]["LAcq"] = self.LAcq
self.JSON["timings"]["Fech"] = self.f_ech
self.JSON["timings"]["NLines"] = self.number_lines
print "NAcq = "+str(self.Nacq)
if self.Nacq > 199999:
raise NameError('Acquisition length over 200.000 points (8Mb = Flash limit)')
return self.Nacq, self.LAcq, self.f_ech, self.number_lines
def set_multi_lines(self, Bool): # OK LIT3RICK
"""
Determines if this is a single-line of multi-line acquisition.
"""
if Bool:
if self.verbose:
print "Doing several lines.\nRemember to indicate how many lines. number_lines = 3 by default"
self.write_fpga(0xEB, 1) # Doing one line if 0, several if 1
self.number_lines = 3
else:
if self.verbose:
print "Doing a single line"
self.write_fpga(0xEB, 0) # Doing one line if 0, several if 1
self.number_lines = 1
def set_tgc_curve(self, tgc_values): # OK LIT3RICK
"""
Sets up the TGC using an array
"""
#print "Setting up the DAC curves"
if len(tgc_values) < 43: # to correct
for i in range(len(tgc_values)):
if (tgc_values[i] >= 0) and (tgc_values[i] < 1020):
self.write_fpga(16+i, tgc_values[i]/4) # /4 since 1024 values, on 8 bits
else:
self.write_fpga(16+i, 0)
#----------------
# FPGA Controls
#----------------
def write_fpga(self, adress, value): # OK LIT3RICK
"""
Basic function to write registers value to the FPGA
"""
if gpioexists:
self.spi.xfer([0xAA])
self.spi.xfer([adress])
self.spi.xfer([value])
self.JSON["registersHex"][hex(adress)] = hex(value)
self.JSON["registers"][int(adress)] = value
def set_ledRGB(self,R,G,B):
self.write_fpga(0xC1, R)
self.write_fpga(0xC2, G)
self.write_fpga(0xC3, B)
#print "LEDs OK"
def init(self): # OK LIT3RICK
"""
Initialises the FPGA
"""
if gpioexists:
GPIO.setmode(GPIO.BCM)
# Once program is loaded, should be OK
#for k in [3,4,17,27,5,12,16,20,15]:
# GPIO.setup(k, GPIO.IN)
# @todo: reset from flash when flash works
self.spi.open(0, 0) # CS0 is the FPGA, CS1 is flash
self.spi.mode = 0b01
self.spi.max_speed_hz = 500000
if self.verbose:
print "spi.cshigh is " + str(self.spi.cshigh)
print "spi mode is " + str(self.spi.mode)
print "spi maxspeed is "+str(self.spi.max_speed_hz)+"hz"
self.set_ledRGB(0,1,0)
else:
print("Not running from a Raspberry Pi")
#----------------
# Testing functions
#----------------
def test_spi(self, n_cycles): # OK LIT3RICK
"""
Blinks the HILO n_cycles times.
"""
self.set_ledRGB(0,0,1)
def set_hilo(self, HILO): # OK LIT3RICK
"""
Sets HILO on TGC
"""
if HILO:
self.write_fpga(0xD8, 0x01) # 1: HILO ON
print "HILO set HIGH"
else:
self.write_fpga(0xD8, 0x00) # 0: HILO OFF
print "HILO set LOW"
def loop_spi(self): # OK LIT3RICK
"""
Pure debug test to spam SPI bus to have HILO LED blink continuously
"""
while 1:
self.write_fpga(0xD8, 0x01)
self.write_fpga(0xD8, 0x00)
def loop_acq(self): # OK LIT3RICK
"""
Pure debug test to spam SPI bus with loop acquisition.
"""
while 1:
self.write_fpga(0xEB, 0x00) # Doing 1 shot
self.write_fpga(0xEF, 0x01) # Cleaning memory pointer
self.write_fpga(0xEA, 0x0) # Software Trig : As to be clear by software
time.sleep(0.001) # sleep 1ms
def ClearMem(self): # OK LIT3RICK
"""
Reset RAM pointer
"""
self.write_fpga(0xEF, 0x01) # To access memory
#----------------
# Setup functions
#----------------
def set_msps(self, f_msps):
"""
Setting acquisition speed.
Using F, ADC speed is determined as 64Msps / (1 + f_msps)
"""
self.write_fpga(0xED, f_msps)
self.f_ech = float(64/((1+f_msps)))
print "Acquisition frequency set at "+str(self.f_ech)+" Msps"
return self.f_ech
def do_acquisition(self):
"""
Doing an acquisition, trigs, then reads the data.
"""
self.write_fpga(0xEF, 0x01) # Cleaning memory pointer
self.JSON["time"] = unicode(datetime.datetime.now())
self.write_fpga(0xEA, 0x01) # Software Trig : As to be clear by software
self.JSON["data"] = []
time.sleep(1)
milestone = self.Nacq / 5
start = time.time()
if gpioexists:
for i in range(2*self.Nacq+2):
self.JSON["data"].append(self.spi.xfer([0x00])[0])
if not ((i+10)%milestone) and self.verbose:
print str((50*i)/self.Nacq)+"% - "+str(self.JSON["data"][-1])+" & "+str(self.JSON["data"][-2])
end = time.time()
delta = end - start
if self.verbose:
print "Took %.2f seconds to transfer." % delta
print "for "+str(2*self.Nacq+2)+" transfers of data"
self.JSON["N"] = new_n("./",self.JSON["experiment"]["id"])
name_json = self.JSON["experiment"]["id"]+"-"+str(self.JSON["N"])+".json"
with open(name_json, 'w') as outfile:
json.dump(self.JSON, outfile)
self.JSON["data"] = []
self.write_fpga(0xEF, 0x01) # Cleaning memory pointer
self.set_ledRGB(0,0,1)
for i in range(2*self.Nacq+2):
self.JSON["data"].append(self.spi.xfer([0x00])[0])
name_json = "_"+self.JSON["experiment"]["id"]+"-"+str(self.JSON["N"])+".json"
with open(name_json, 'w') as outfile:
json.dump(self.JSON, outfile)
if self.verbose:
print name_json+": file saved."
else:
print "Not on a RPI"
return self.JSON["data"]
def do_acquisition_twice(self):
"""
Doing an acquisition, trigs, then reads the data.
"""
self.write_fpga(0xEF, 0x01) # Cleaning memory pointer
self.JSON["time"] = unicode(datetime.datetime.now())
self.write_fpga(0xEA, 0x01) # Software Trig : As to be clear by software
self.JSON["data"] = []
time.sleep(1)
milestone = self.Nacq / 5
start = time.time()
if gpioexists:
for i in range(2*self.Nacq+2):
self.JSON["data"].append(self.spi.xfer([0x00])[0])
if not ((i+10)%milestone) and self.verbose:
print str((50*i)/self.Nacq)+"% - "+str(self.JSON["data"][-1])+" & "+str(self.JSON["data"][-2])
end = time.time()
delta = end - start
if self.verbose:
print "Took %.2f seconds to transfer." % delta
print "for "+str(2*self.Nacq+2)+" transfers of data"
self.JSON["N"] = new_n("./",self.JSON["experiment"]["id"])
name_json = self.JSON["experiment"]["id"]+"a-"+str(self.JSON["N"])+".json"
with open(name_json, 'w') as outfile:
json.dump(self.JSON, outfile)
if self.verbose:
print name_json+": file saved."
else:
print "Not on a RPI"
self.write_fpga(0xEF, 0x01) # Cleaning memory pointer
self.write_fpga(0xC2, 1)
self.JSON["time"] = unicode(datetime.datetime.now())
self.JSON["data"] = []
time.sleep(1)
milestone = self.Nacq / 5
start = time.time()
if gpioexists:
for i in range(2*self.Nacq+2):
self.JSON["data"].append(self.spi.xfer([0x00])[0])
if not ((i+10)%milestone) and self.verbose:
print str((50*i)/self.Nacq)+"% - "+str(self.JSON["data"][-1])+" & "+str(self.JSON["data"][-2])
end = time.time()
delta = end - start
if self.verbose:
print "Took %.2f seconds to transfer." % delta
print "for "+str(2*self.Nacq+2)+" transfers of data"
self.JSON["N"] = new_n("./",self.JSON["experiment"]["id"])
name_json = self.JSON["experiment"]["id"]+"b-"+str(self.JSON["N"])+".json"
with open(name_json, 'w') as outfile:
json.dump(self.JSON, outfile)
if self.verbose:
print name_json+": file saved."
else:
print "Not on a RPI"
return self.JSON["data"]
def set_acquisition_number_lines(self, n):
"""
Sets the number of lines to acquire.
"""
n_msb, n_lsb = n/256, 0x00FF&n
self.write_fpga(0xEE, n_lsb)
self.write_fpga(0xDE, n_msb)
self.number_lines = n
if self.verbose:
print "Number of lines: "+str(n)
def set_HV(self, HVLevel):
"""
Sets HV level
"""
hv_msb, hv_lsb = HVLevel/256, 0x00FF&HVLevel
self.write_fpga(0xD7, hv_lsb)
self.write_fpga(0xD6, hv_msb)
if self.verbose:
print "HV Level: "+str(HVLevel)+" (/1Obits)"
def config_spi(self):
"""
Initial configuration of the FPGA.
"""
# Setup FPGA values by default
self.set_pon(200) # Set PulseOn
self.set_pulses_delays() # Set Lengh between Pon and Poff: 100ns
self.set_poff(2000) # Setting Poff 2us
#set_tgc_constant(20, spi) # gain at 20mV (2%)
self.write_fpga(0xEC, 0x33) # Set DAC constant
self.set_delta_acq(7000) # 7us
#write_fpga(0xEA, 0x00) # Software Trig : As to be clear by software
self.write_fpga(0xEB, 0x00) # 0: single mode 1 continious mode
self.write_fpga(0xED, 0x03) # Frequency of ADC acquisition
self.set_acquisition_number_lines(0xA0) # How many cycles in countinious mode
print "Config FPGA done!"
def set_tgc_constant(self, mV):
"""
Setting TGC constant.
"""
if mV > 1000:
mV = 1000
elif mV < 0:
mV = 0
hmV = mV/4
print "Gain:", mV, " mV -- ", hex(hmV)
self.write_fpga(0xEC, hmV) # Voltage gain control: 0V to 1V
def set_pon(self, p_on):
if p_on > 2500:
p_on = 2500
elif p_on < 0:
p_on = 0
unit_p_on = int(p_on*128.0/1000)
self.JSON["parameters"]["Pon"] = int(p_on)
self.JSON["parameters"]["Pon_Real"] = int(unit_p_on*1000/128)
print "POn width:", p_on, " ns -- ", hex(unit_p_on)
self.write_fpga(0xE0, unit_p_on) # set sEEPon
return unit_p_on*1000/128
def set_pon_neg(self, p_on_neg):
if p_on_neg > 2500:
p_on_neg = 2500
elif p_on_neg < 0:
p_on_neg = 0
unit_p_on_neg = int(p_on_neg*128.0/1000)
self.JSON["parameters"]["Pon_neg"] = int(p_on_neg)
self.JSON["parameters"]["Pon_neg_Real"] = int(unit_p_on_neg*1000/128)
print "PonNeg width:", p_on_neg, " ns -- ", hex(unit_p_on_neg)
self.write_fpga(0xD4, unit_p_on_neg) # set sEEPon
return unit_p_on_neg*1000/128
def set_pDampInt(self, pDampInt):
if pDampInt > 2500:
pDampInt = 2500
elif pDampInt < 0:
pDampInt = 0
unit_p_damp_int = int(pDampInt*128.0/1000)
self.JSON["parameters"]["Pon_neg"] = int(pDampInt)
self.JSON["parameters"]["Pon_neg_Real"] = int(unit_p_damp_int*1000/128)
print "PDampInt width:", pDampInt, " ns -- ", hex(unit_p_damp_int)
self.write_fpga(0xD2, unit_p_damp_int) # set sEEPon
return unit_p_damp_int*1000/128
def set_pulses_delays(self):
PDELAYS = int(10/(1000/128.0))
return PDELAYS*1000/128
def set_poff(self, poff_value):
# Sets the damping length.
p_off = int(poff_value /(1000/128.0))
#print sEEPoff, POff
p_off_msb, p_off_lsb = 0x00FF&p_off/256, 0x00FF&p_off
print "Poff:", poff_value, " ns -- ", hex(p_off_msb), hex(p_off_lsb)
self.JSON["parameters"]["Poff"] = int(poff_value)
self.JSON["parameters"]["Poff_Real"] = int(p_off*1000/128)
self.write_fpga(0xE1, p_off_msb) # set sEEPon MSB
self.write_fpga(0xE2, p_off_lsb) # set sEEPon LSB
return p_off*1000/128
# Setting Poff to Acq delay sEEDelayACQ
def set_delta_acq(self, acquisition_delay_val):
if acquisition_delay_val > 255*255:
acquisition_delay_val = 254*254
elif acquisition_delay_val < 0:
acquisition_delay_val = 0
hDA = int((128*acquisition_delay_val)/1000.0)
hDAMSB, hDALSB = hDA/256, 0x00FF&hDA
print "Delay between:", hDA*1000/128, "ns -- ", hex(hDAMSB), hex(hDALSB)
self.JSON["parameters"]["DeltaAcq"] = int(acquisition_delay_val)
self.JSON["parameters"]["DeltaAcq_Real"] = int(hDA*1000/128)
self.write_fpga(0xE3, hDAMSB) # set sEEPon MSB
self.write_fpga(0xE4, hDALSB) # set sEEPon LSB
return acquisition_delay_val
def set_length_acq(self, LAcqI):
correct_length_acq = int((128*LAcqI)/1000) # (LAcqI*128/1000)
#print correct_length_acq, hex(LAcq), hex(LAcqI)
self.JSON["parameters"]["LengthAcq"] = int(LAcqI)
self.JSON["parameters"]["LengthAcq_Real"] = int(correct_length_acq*1000/128)
length_acq_msb = 0x00FF & correct_length_acq/256
length_acq_lsb = 0x00FF & correct_length_acq
if self.verbose:
print "Acquisition length: ", int(correct_length_acq*1000/128), "ns."
#print "Arguments: ", hex(length_acq_msb), hex(length_acq_lsb)
self.write_fpga(0xE5, length_acq_msb) # set sEEPon MSB
self.write_fpga(0xE6, length_acq_lsb) # set sEEPon LSB
return int(correct_length_acq*1000/128)
def set_period_between_acqs(self, lEPeriod):
repeat_length_arg = int(lEPeriod*128.0/1000) #ns
repeat_length_msb = 0x00FF&repeat_length_arg/(256*256)
repeat_length = 0x00FF&repeat_length_arg/256
repeat_length_lsb = 0x0000FF&repeat_length_arg
print "Period between two acquisitions:", lEPeriod/1000, "us"
#print "Arguments:", hex(repeat_length_msb), hex(repeat_length), hex(repeat_length_lsb)
self.JSON["parameters"]["PeriodAcq"] = int(lEPeriod)
self.JSON["parameters"]["PeriodAcq_Real"] = int(repeat_length_arg*1000/128)
self.write_fpga(0xE7, repeat_length_msb) # Period of one cycle MSB
self.write_fpga(0xE8, repeat_length) # Period of one cycle 15 to 8
self.write_fpga(0xE9, repeat_length_lsb) # Period of one cycle LSB
return repeat_length_arg*1000/128
def set_pulse_train(self, Pon,PdampOne, PHVneg, PdampTwo, pDelay, Acq):
delays = 10
hexdelay = int(delays*128/1000)
t1 = delays
t2 = t1 + Pon
t3 = t2 + delays
t4 = t3 + PdampOne
t5 = t4 + delays
t6 = t5 + PHVneg
t7 = t6 + delays
t8 = t7 + PdampTwo
t9 = t8 + pDelay
t10 = t9 + Acq
self.write_fpga(0xD0, int(t1)*128/1000)
tpon = self.set_pon(t2)
self.write_fpga(0xD1, int(t3)*128/1000)
tpdampint = self.set_pDampInt(t4)
self.write_fpga(0xD3, int(t5)*128/1000)# PDamp1 and PnHV
tponNHV = self.set_pon_neg(t6)
self.write_fpga(0xD5, int(t7)*128/1000) # PnHV and PDamp2
refponnhv = self.set_poff(t8) #@unused @tocheck
endPoff = self.set_delta_acq(t9) #@unused @tocheck
l_acq = self.set_length_acq(t10)
print "----- Check of timings ---- "
print t2,t4,t6,t8,t9,t10
print "Key timings",hex(t2*128/1000),hex(t4*128/1000),hex(t6*128/1000),hex(t8*128/1000),hex(t9*128/1000),hex(t10*128/1000)
print "Smaller inter periods",hex(t1*128/1000),hex(t3*128/1000),hex(t5*128/1000),hex(t7*128/1000)
print "--------------------------- "
print "Set_pulse_train 'l_acq' "+str(l_acq)
return l_acq
##############
#
# Processing Part
#
##############
def new_n(path,expe_id):
os.chdir(path)
Nmax = 0
for jsonfile in glob.glob("*.json"):
if jsonfile.startswith(expe_id):
N = int ( jsonfile.split("-")[1].split(".")[0] )
if N > Nmax:
Nmax = N
return Nmax+1
def make_clean(path):
os.chdir(path)
if not os.path.exists(path+"data"):
os.makedirs(path+"data")
print("'data' folder created")
if not os.path.exists(path+"images"):
os.makedirs(path+"images")
print("'images' folder created")
for root, dirs, files in os.walk(path):
for filename in files:
if filename.endswith(".json"):
original_file = os.path.join(root, filename)
if not "data/" in original_file:
print("Moved '",original_file," to ","./data/"+filename)
os.rename(original_file, "./data/"+filename)
return 0
def metadatag_images_batch(list_modules, exp_id, img_category, img_desc):
"""
Used to add proper tags to all images. Dangerous to use...
"""
if pyexivexists:
Imgs = []
for dirpath, dirnames, filenames in os.walk("."):
for filename in [f for f in filenames if (f.endswith(".jpg") or f.endswith(".png"))]:
Imgs.append(os.path.join(dirpath, filename))
for file_name in Imgs:
metadata = pyexiv2.ImageMetadata(file_name)
try:
metadata.read()
except IOError:
print "Not an image"
else:
# Modules
metadata['Exif.Image.Software'] = list_modules # "matty, cletus"
metadata['Exif.Image.Make'] = exp_id #"20180516a"
metadata['Exif.Photo.MakerNote'] = img_category #"oscilloscope"
metadata['Exif.Image.ImageDescription'] = img_desc #"Unpacking data"
metadata.write()
print file_name, "done"
else:
print "PyExiv not present"
return 0
def tag_image(file_name, Modules, Experiment, Category, Description):
if pyexivexists:
metadata = pyexiv2.ImageMetadata(file_name)
try:
metadata.read()
except IOError:
print "Not an image"
else:
metadata['Exif.Image.Software'] = Modules # "matty, cletus"
metadata['Exif.Image.Make'] = Experiment #"20180516a"
metadata['Exif.Photo.MakerNote'] = Category #"oscilloscope"
metadata['Exif.Image.ImageDescription'] = Description #"Unpacking data"
metadata.write()
else:
print "PyExiv not present"
return 1
class us_json:
"""
Class used to process data once acquired.
"""
metatags = {}
show_images = True
IDLine = []
TT1 = []
TT2 = []
tmp = []
tdac = []
FFT_x = []
FFT_y = []
EnvHil = []
Duration = 0
filtered_fft = []
LengthT = 0
Nacq = 0
Raw = []
Signal = []
filtered_signal = []
Registers = {}
t = []
fPiezo = 5
Bandwidth = 1.0
f = 0 # sampling freq
piezo = ""
experiment = ""
len_acq = 0
len_line = 0
N = 0
V = 0
single = 0
processed = False
iD = 0
raw_2d_image = []
metatags["firmware_md5"] = ""
def JSONprocessing(self, path):
"""
Creates actual raw data from the signals acquired.
"""
IDLine = []
TT1 = []
TT2 = []
tmp = []
tdac = []
with open(path) as json_data:
#DATA = {}
d = json.load(json_data)
json_data.close()
self.description = d["experiment"]["description"]
self.piezo = d["experiment"]["probe"]
self.metatags["time"] = d["time"]
self.metatags["original_json"] = d
A = d["data"][6:]
#print d.keys()
for i in range(len(A)/2-1):
if (A[2*i+1]) < 128:
#print "first"
value = 128*(A[2*i+0]&0b00011111) + A[2*i+1] - 4*512
IDLine.append(((A[2*i+0]&0b11110000)/16 -8) /2) # Identify the # of the line
TT1.append((A[2*i+0] & 0b00001000) / 0b1000)
TT2.append((A[2*i+0] & 0b00010000) / 0b10000)
tmp.append(2.0*value/(4*512.0))
else:
#print "second"
value = 128*(A[2*i+1]&0b00011111) + A[2*i+2] - 4*512
IDLine.append(((A[2*i+1]&0b00011111)/16 -8) /2) # Identify the # of the line
TT1.append((A[2*i+1] & 0b00001000) / 0b1000)
TT2.append((A[2*i+1] & 0b00010000) / 0b10000)
tmp.append(2.0*value/(4*512.0))
print "Data acquired"
self.Registers = d["registers"]
self.timings = d["timings"]
self.f = float(64/((1.0+int(d["registers"]["237"]))))
t = [1.0*x/self.f + self.timings['t4']/1000.0 for x in range(len(tmp))]
self.t = t
for i in range(len(IDLine)):
if IDLine[i] < 0:
IDLine[i] = 0
self.LengthT = len(t)
#self.EnvHil = self.filtered_signal
#self.EnvHil = np.asarray(np.abs(signal.rrt(self.filtered_signal)))
self.TT1 = TT1
self.TT2 = TT2
self.Nacq = d["timings"]["NLines"]
self.len_acq = len(self.t)
self.len_line = int(self.len_acq/self.Nacq)
# Precising the DAC
REG = [int(x) for x in d["registers"].keys() if int(x) < 100]
REG.sort()
dac = []
for k in REG:
dac.append(d["registers"][str(k)])
# Building the DAC timeline
tdac = []
for pts in t[0:self.len_line]: # @todo -> corriger pour avoir une ligne de 200us
i = int(pts/5.0) # time in us
try:
tdac.append(4.0*d["registers"][str(i+16)])
except:
tdac.append(-1)
# Updating the JSON
self.tdac = tdac
self.tmp = tmp
self.single = d["registers"][str(0XEB)]
self.t = t
self.IDLine = IDLine
self.metatags["firmware_md5"] = d['firmware_md5']
self.experiment = d['experiment']
self.parameters = d['parameters']
self.iD = d['experiment']["id"]
self.N = d['N']
self.V = d['V']
self.processed = True
self.Duration = (self.parameters['LengthAcq']-self.parameters['DeltaAcq'])/1000.0
def create_fft(self):
self.FFT_x = [X*self.f / (self.LengthT) for X in range(self.LengthT)]
self.FFT_y = np.fft.fft(self.tmp)
self.filtered_fft = np.fft.fft(self.tmp)
for k in range(self.LengthT/2 + 1):
if k < (self.LengthT * self.fPiezo * (1 - self.Bandwidth/2.0) / self.f):
self.filtered_fft[k] = 0
self.filtered_fft[-k] = 0
if k > (self.LengthT * self.fPiezo *(1 + self.Bandwidth/2.0) / self.f):
self.filtered_fft[k] = 0
self.filtered_fft[-k] = 0
self.filtered_signal = np.real(np.fft.ifft(self.filtered_fft))
if self.processed:
plt.figure(figsize=(15, 5))
plot_time = self.FFT_x[1:self.LengthT/2]
plot_abs_fft = np.abs(self.FFT_y[1:self.LengthT/2])
plot_filtered_fft = np.abs(self.filtered_fft[1:self.LengthT/2])
plt.plot(plot_time, plot_abs_fft, 'b-')
plt.plot(plot_time, plot_filtered_fft, 'y-')
plt.title("FFT of "+self.iD + " - acq. #: "+ str(self.N))
plt.xlabel('Freq (MHz)')
plt.tight_layout()
file_name = "images/"+self.iD+"-"+str(self.N)+"-fft.jpg"
plt.savefig(file_name)
if self.show_images:
plt.show()
description_experiment = "FFT of the of "+self.iD
description_experiment += " experiment. "+self.experiment["description"]
tag_image(file_name,"matty, cletus", self.iD, "FFT", description_experiment)
def mkImg(self):
"""
Makes an image from the JSON content
"""
if self.processed: #@todo check this to get env & al
fig, ax1 = plt.subplots(figsize=(20, 10))
ax2 = ax1.twinx()
ax2.plot(self.t[0:self.len_line], self.tdac[0:self.len_line], 'g-')
ax1.plot(self.t[0:self.len_line], self.tmp[0:self.len_line], 'b-')
plt.title(self.create_title_text())
ax1.set_xlabel('Time (us)')
ax1.set_ylabel('Signal from ADC (V)', color='b')
ax2.set_ylabel('DAC output in mV (range 0 to 1V)', color='g')
plt.tight_layout()
file_name = "images/"+self.iD+"-"+str(self.N)+".jpg"
plt.savefig(file_name)
if self.show_images:
plt.show()
tag_image(file_name,"matty", self.iD, "graph", "Automated image of "+self.iD +" experiment. "+self.experiment["description"])
def tag_image(self, bricks, experiment_id, img_type, img_desc,file_name):
"""
Tags an image using available info.
"""
#file_name = "images/"+self.iD+"-"+str(self.N)+".jpg"
#@todo : create images folder if not exists
if pyexivexists:
metadata = pyexiv2.ImageMetadata(file_name)
try:
metadata.read()
except IOError:
print "Not an image"
else:
metadata['Exif.Image.Software'] = bricks
metadata['Exif.Image.Make'] = experiment_id
metadata['Exif.Photo.MakerNote'] = img_type
metadata['Exif.Image.ImageDescription'] = img_desc
metadata.write()
else:
print "pyexiv does not exist"
def mk2DArray(self):
"""
Creates a 2D array from raw json.
"""
len_acquisition = len(self.tmp)
img = []
tmpline = []
lineindex = 0
for k in range(len_acquisition):
if self.IDLine[k] <> lineindex:
img.append(tmpline)
lineindex = self.IDLine[k]
tmpline = []
else:
tmpline.append(self.tmp[k])
duration_self = int(float(self.f)*self.Duration)
y = [s for s in img if (len(s) > duration_self-10 and len(s) < duration_self+10)]
if self.Nacq > 1:
clean_image = np.zeros((len(y), len(self.tmp)/len(y)))
else:
clean_image = np.zeros((len(y),1))
for i in range(len(y)):
clean_image[i][0:len(y[i])] = y[i]
img_size = np.shape(clean_image)
#str(float(self.f)*Duration)
Duration = (self.parameters['LengthAcq']-self.parameters['DeltaAcq'])/1000.0
clean_image = clean_image[:, :int(Duration*self.f)]
plt.figure(figsize=(15, 10))
if self.Nacq > 1:
print img_size[1],img_size[0]
plt.imshow(np.sqrt(np.abs(clean_image)), cmap='gray', aspect=0.5*(img_size[1]/img_size[0]), interpolation='nearest')
else:
plt.plot(self.t[0:self.len_line], self.tmp[0:self.len_line], 'b-')
#plt.show()
plt.title(self.create_title_text())
#plt.colorbar(im, orientation='vertical')
plt.tight_layout()
file_name = "images/2DArray_"+self.iD+"-"+str(self.N)+".jpg"
plt.savefig(file_name)
tag_image(file_name, "matty, "+self.piezo, self.iD, "BC", self.create_title_text().replace("\n", ". "))
if self.show_images:
plt.show()
self.raw_2d_image = clean_image #@todo: reuse this 2D image ?
return clean_image
def save_npz(self):
"""
Saves the dataset as an NPZ, in the data folder.
"""
path_npz = "data/"+self.iD+"-"+str(self.N)+".npz" # @todo: create folder if not.
np.savez(path_npz, self)
def plot_detail(self, nb_line, Start, Stop): #@todo: use it when processing data
"""
Shows and displays a given line, with start and stop boundaries.
"""
#TLine = self.len_line/self.f #@unused
Offset = nb_line*self.len_line
plot_time_series = self.t[Offset+int(Start/self.f):Offset+int(Stop*self.f)]
plot_signal = self.tmp[Offset+int(Start/self.f):int(Stop*self.f)]
#@todo .. what happens if no EnvHil ?
plot_enveloppe = self.EnvHil[Offset+int(Start/self.f):int(Stop*self.f)]
plot_title = "Detail of "+self.iD + " - acq. #: "+ str(self.N)+", between "
plot_title += str(Start)+" and "+str(Stop)+" (line #"+str(nb_line)+")."
plt.figure(figsize=(15, 5))
plt.plot(plot_time_series, plot_signal, 'b-')
plt.plot(plot_time_series, plot_enveloppe, 'y-')
plt.title(plot_title)
plt.xlabel('Time in us')
plt.tight_layout()
file_name = "images/detail_"+self.iD+"-"+str(self.N)+"-"
file_name += str(Start)+"-"+str(Stop)+"-line"+str(nb_line)+".jpg"
plt.savefig(file_name)
if self.show_images:
plt.show()
def mkFiltered(self, original_image):
"""
Takes the image, then filters it around self.fPiezo .
"""
filtered_image = []
fft_image_filtered = []
if len(original_image):
num_lines, length_lines = np.shape(original_image)
f_array = [X*self.f / length_lines for X in range(length_lines)]
for k in range(num_lines): # number of images
fft_single_line = np.fft.fft(original_image[k])
fft_image_filtered.append(fft_single_line)
for p in range(len(fft_single_line)/2+1):
f_min = (1000.0 * self.fPiezo * 0.7)
f_max = (1000.0 * self.fPiezo * 1.27)
if (f_array[p] > f_max or f_array[p] < f_min):
fft_single_line[p] = 0
fft_single_line[-p] = 0
filtered_image.append(np.real(np.fft.ifft(fft_single_line)))
return filtered_image, fft_image_filtered
def mkSpectrum(self, img):
"""
Creates a 2D array spectrum from 2D image.
"""
Spectrum = []
#Filtered = [] #@unused
if len(img):
n_lines, len_lines = np.shape(img)
self.FFT_x = [X*self.f / len_lines for X in range(len_lines)] #@usuned, why?
for k in range(n_lines):
fft_single_line = np.fft.fft(img[k])
Spectrum.append(fft_single_line[0:n_lines/2])
plt.figure(figsize=(15, 10))
plt.imshow(np.sqrt(np.abs(Spectrum)), extent=[0, 1000.0*self.f/2, n_lines, 0], cmap='hsv', aspect=30.0, interpolation='nearest')
plt.axvline(x=(1000 * self.fPiezo * 1.27), linewidth=4, color='b')
plt.axvline(x=(1000 * self.fPiezo * 0.7), linewidth=4, color='b')
plt.xlabel("Frequency (kHz)")
plt.ylabel("Lines #")
plt.title(self.create_title_text())
plt.tight_layout()
file_name = "images/Spectrum_"+self.iD+"-"+str(self.N)+".jpg"
plt.savefig(file_name)
img_desc = self.create_title_text().replace("\n", ". ")
tag_image(file_name, "matty,"+self.piezo, self.iD, "FFT", img_desc)
else:
print "2D Array not created yet"
return np.abs(Spectrum)
def create_title_text(self):
"""
Creates a string to title images with appropriate acquisition details
"""
title_text = "Experiment: " +self.iD+"-"+str(self.N)+"\nDuration: "+str(self.Duration)
title_text += "us ("+str(self.parameters['LengthAcq'])+" - "
title_text += str(self.parameters['DeltaAcq'])+"), for "+str(self.Nacq)
title_text += " repeats "
title_text += "each "+str(self.parameters['PeriodAcq_Real']/1000.0)+"us\n"
title_text += "Fech = "+str(self.f)+"Msps, total of "+str(float(self.f)*self.Duration)
title_text += " pts per line, Nacq = "+str(self.Nacq)+"\n"
title_text += self.experiment["description"]+", probe: "
title_text += self.piezo+", target = "+self.experiment["target"]+"\n"
title_text += "Timestamp = "+str(self.metatags["time"])
return title_text
##############
#
# Support