-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolution.py
426 lines (331 loc) · 12.4 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import itertools
import unittest
def all_pairs_shortest_paths(graph):
"""
This implementation uses the Floyd-Warshall algorithm to find the shortest path for all (row, col) pairs in the
given graph. The Floyd-Warshall algorithm is a good choice for computing paths between all pairs of vertices in
dense graphs, in which most or all pairs of vertices are connected by edges.
https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
:param graph: a dense graph represented as a square matrix
"""
n = len(graph)
for k in range(n): # step
for i in range(n): # row
for j in range(n): # column
# If an edge is found to reduce distance, update the shortest paths
if graph[i][j] > graph[i][k] + graph[k][j]:
graph[i][j] = graph[i][k] + graph[k][j]
def path(bunnies):
"""
Given a list of bunnies, return a path to pick up the bunnies.
:param bunnies: a list of bunnies
:return: a path that visits the list of bunnies
"""
bunnies = [0] + bunnies + [-1]
path_to_bunnies = list()
for i in range(1, len(bunnies)):
path_to_bunnies.append((bunnies[i - 1], bunnies[i]))
return path_to_bunnies
def solution(times, time_limit):
"""
Calculate the most bunnies you can pick up and which bunnies they are, while still escaping through the bulkhead
before the doors close for good. If there are multiple sets of bunnies of the same size, return the set of bunnies
with the lowest worker IDs (as indexes) in sorted order. The bunnies are represented as a sorted list by worker ID,
with the first bunny being 0. There are at most 5 bunnies, and time_limit is a non-negative integer that is at
most 999.
:param times: a matrix
:param time_limit: the time limit
:return: the ids of the rescued bunnies
"""
max_time_limit = 999
if time_limit < 0 or time_limit > max_time_limit: # time_limit is a non-negative integer that is at most 999
return []
all_pairs_shortest_paths(times)
n = len(times) # number of rows
bunny_count = n - 2 # first row is "Start", last row is "Bulkhead"
rescued_bunnies = []
for bunny in range(n):
if times[bunny][bunny] < 0: # check the diagonal
rescued_bunnies = [bunny for bunny in range(bunny_count)]
return rescued_bunnies
for bunny in reversed(range(bunny_count + 1)):
for bunnies in itertools.permutations(range(1, bunny_count + 1), r=bunny):
total_time = 0
path_to_bunnies = path(list(bunnies))
for start_time, end_time in path_to_bunnies:
total_time += times[start_time][end_time]
if total_time <= time_limit:
rescued_bunnies = sorted(list(bunny - 1 for bunny in bunnies))
return rescued_bunnies
return rescued_bunnies
def all_tests():
suite = unittest.TestSuite()
suite.addTest(AllPairsShortestPathsTests)
suite.addTest(PathTests)
suite.addTest(RescuedBunniesTests)
return suite
if __name__ == "__main__":
runner = unittest.TextTestRunner()
runner.run(all_tests())
class AllPairsShortestPathsTests(unittest.TestCase):
"""
Given a matrix, verify that the all_pairs_shortest_paths() function is correctly calculating all-pairs
shortest-paths using the Floyd-Warshall algorithm.
"""
def test_1(self):
times = [
[0, 2, 2, 2, -1],
[9, 0, 2, 2, -1],
[9, 3, 0, 2, -1],
[9, 3, 2, 0, -1],
[9, 3, 2, 2, 0]
]
expected_shortest_paths = [
[0, 2, 1, 1, -1],
[8, 0, 1, 1, -1],
[8, 2, 0, 1, -1],
[8, 2, 1, 0, -1],
[9, 3, 2, 2, 0]
]
all_pairs_shortest_paths(times)
self.assertEqual(expected_shortest_paths, times)
def test_2(self):
times = [
[0, 1, 1, 1, 1],
[1, 0, 1, 1, 1],
[1, 1, 0, 1, 1],
[1, 1, 1, 0, 1],
[1, 1, 1, 1, 0]
]
expected_shortest_paths = [
[0, 1, 1, 1, 1],
[1, 0, 1, 1, 1],
[1, 1, 0, 1, 1],
[1, 1, 1, 0, 1],
[1, 1, 1, 1, 0]
]
all_pairs_shortest_paths(times)
self.assertEqual(expected_shortest_paths, times)
def test_3(self):
times = [
[0, 2, 2, 2, -1],
[9, 0, 2, 2, 0],
[9, 3, 0, 2, 0],
[9, 3, 2, 0, 0],
[-1, 3, 2, 2, 0]
]
expected_shortest_paths = [
[-2, 0, 0, 0, -3],
[-1, 0, 1, 1, -2],
[-1, 1, 0, 1, -2],
[-1, 1, 1, 0, -2],
[-3, -1, -1, -1, -4]
]
all_pairs_shortest_paths(times)
self.assertEqual(expected_shortest_paths, times)
def test_4(self):
times = [
[0, 3, 2, 2, -1],
[8, 0, 1, 2, -1],
[8, 3, 2, 2, -1],
[9, 2, 3, 0, -1],
[9, 3, 1, 2, 0],
]
expected_shortest_paths = [
[0, 2, 0, 1, -1],
[8, 0, 0, 1, -1],
[8, 2, 0, 1, -1],
[8, 2, 0, 0, -1],
[9, 3, 1, 2, 0]
]
all_pairs_shortest_paths(times)
self.assertEqual(expected_shortest_paths, times)
class PathTests(unittest.TestCase):
"""
Given a list of nodes, verify that the path() function is returning the correct path through those nodes.
"""
def test_3_nodes_123(self):
bunny_ids = list((1, 2, 3))
expected_path = [(0, 1), (1, 2), (2, 3), (3, -1)]
path_to_bunnies = path(bunny_ids)
self.assertEqual(expected_path, path_to_bunnies)
def test_3_nodes_132(self):
bunny_ids = list((1, 3, 2))
expected_path = [(0, 1), (1, 3), (3, 2), (2, -1)]
path_to_bunnies = path(bunny_ids)
self.assertEqual(expected_path, path_to_bunnies)
def test_3_nodes_321(self):
bunny_ids = list((3, 2, 1))
expected_path = [(0, 3), (3, 2), (2, 1), (1, -1)]
path_to_bunnies = path(bunny_ids)
self.assertEqual(expected_path, path_to_bunnies)
def test_4_nodes_1234(self):
bunny_ids = list((1, 2, 3, 4))
expected_path = [(0, 1), (1, 2), (2, 3), (3, 4), (4, -1)]
path_to_bunnies = path(bunny_ids)
self.assertEqual(expected_path, path_to_bunnies)
def test_4_nodes_3142(self):
bunny_ids = list((3, 1, 4, 2))
expected_path = [(0, 3), (3, 1), (1, 4), (4, 2), (2, -1)]
path_to_bunnies = path(bunny_ids)
self.assertEqual(expected_path, path_to_bunnies)
def test_4_nodes_4321(self):
bunny_ids = list((4, 3, 2, 1))
expected_path = [(0, 4), (4, 3), (3, 2), (2, 1), (1, -1)]
path_to_bunnies = path(bunny_ids)
self.assertEqual(expected_path, path_to_bunnies)
def test_5_nodes_15234(self):
bunny_ids = list((1, 5, 2, 3, 4))
expected_path = [(0, 1), (1, 5), (5, 2), (2, 3), (3, 4), (4, -1)]
path_to_bunnies = path(bunny_ids)
self.assertEqual(expected_path, path_to_bunnies)
class RescuedBunniesTests(unittest.TestCase):
"""
Given an input matrix where the inner rows designate the starting point, bunny 0...N, and the bulkhead door exit
respectively, verify that the solution results in the set of rescued bunnies under the given time constraint.
"""
def test_1(self):
times = [
# start, end, delta, time, status
[0, 2, 2, 2, -1], # 0 = Start
[9, 0, 2, 2, -1], # 1 = Bunny 0
[9, 3, 0, 2, -1], # 2 = Bunny 1
[9, 3, 2, 0, -1], # 3 = Bunny 2
[9, 3, 2, 2, 0], # 4 = Bulkhead
]
time_limit = 1
expected_bunny_ids = [1, 2]
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_2(self):
times = [
# start, end, delta, time, status
[0, 1, 1, 1, 1], # 0 = Start
[1, 0, 1, 1, 1], # 1 = Bunny 0
[1, 1, 0, 1, 1], # 2 = Bunny 1
[1, 1, 1, 0, 1], # 3 = Bunny 2
[1, 1, 1, 1, 0] # 4 = Bulkhead
]
time_limit = 3
expected_bunny_ids = [0, 1]
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_infinite_negative_cycle(self):
times = [
# start, end, delta, time, status
[0, 2, 2, 2, -1],
[9, 0, 2, 2, 0],
[9, 3, 0, 2, 0],
[9, 3, 2, 0, 0],
[-1, 3, 2, 2, 0]
]
time_limit = 200
expected_bunny_ids = [0, 1, 2]
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_non_rescuable_bunnies(self):
times = [
# start, end, delta, time, status
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1]
]
time_limit = 1
expected_bunny_ids = []
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_one_bunny(self):
times = [
# start, end, delta, time, status
[0, 1, 1, 1, -1], # 0 = Start
[9, 0, 2, 2, -1], # 1 = Bunny 0
[1, 1, 1, 1, 0], # 4 = Bulkhead
]
time_limit = 2
expected_bunny_ids = [0]
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_multiple_revisits(self):
times = [
# start, end, delta, time, status
[0, 5, 11, 11, 1],
[10, 0, 1, 5, 1],
[10, 1, 0, 4, 0],
[10, 1, 5, 0, 1],
[10, 10, 10, 10, 0]
]
time_limit = 10
expected_bunny_ids = [0, 1]
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_multiple_revisits_2(self):
times = [
# start, end, delta, time, status
[0, 10, 10, 10, 1],
[0, 0, 10, 10, 10],
[0, 10, 0, 10, 10],
[0, 10, 10, 0, 10],
[1, 1, 1, 1, 0]
]
time_limit = 5
expected_bunny_ids = [0, 1]
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_travel_time(self):
times = [
# start, end, delta, time, status
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]
]
time_limit = 1
expected_bunny_ids = [0, 1, 2]
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_no_bunnies(self):
times = [
[2, 2],
[2, 2]
]
time_limit = 1
expected_bunny_ids = []
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_backward_bunny_path(self):
times = [
# start, end, delta, time, status
[0, 10, 10, 1, 10],
[10, 0, 10, 10, 1],
[10, 1, 0, 10, 10],
[10, 10, 1, 0, 10],
[1, 10, 10, 10, 0]
]
time_limit = 6
expected_bunny_ids = [0, 1, 2]
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_empty_matrix(self):
times = []
time_limit = 10
expected_bunny_ids = []
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)
def test_max_time_limit_exceeded(self):
times = [
# start, end, delta, time, status
[0, 2, 2, 2, -1], # 0 = Start
[9, 0, 2, 2, -1], # 1 = Bunny 0
[9, 3, 0, 2, -1], # 2 = Bunny 1
[9, 3, 2, 0, -1], # 3 = Bunny 2
[9, 3, 2, 2, 0], # 4 = Bulkhead
]
time_limit = 1000
expected_bunny_ids = []
rescued_bunnies = solution(times, time_limit)
self.assertEqual(expected_bunny_ids, rescued_bunnies)