forked from googleworkspace/apps-script-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction.gs
117 lines (109 loc) · 3.5 KB
/
prediction.gs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/**
* Copyright Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// [START apps_script_prediction_query_hosted_model]
/**
* Runs sentiment analysis across a sentence.
* Prints the sentiment label.
*/
function queryHostedModel() {
// When querying hosted models you must always use this
// specific project number.
var projectNumber = '414649711441';
var hostedModelName = 'sample.sentiment';
// Query the hosted model with a positive statement.
var predictionString = 'Want to go to the park this weekend?';
var prediction = Prediction.Hostedmodels.predict(
{
input: {
csvInstance: [predictionString]
}
},
projectNumber,
hostedModelName);
// Logs Sentiment: positive.
Logger.log('Sentiment: ' + prediction.outputLabel);
// Now query the hosted model with a negative statement.
predictionString = 'You are not very nice!';
prediction = Prediction.Hostedmodels.predict(
{
input: {
csvInstance: [predictionString]
}
},
projectNumber,
hostedModelName);
// Logs Sentiment: negative.
Logger.log('Sentiment: ' + prediction.outputLabel);
}
// [END apps_script_prediction_query_hosted_model]
// [START apps_script_prediction_create_new_model]
/**
* Creates a new prediction model.
*/
function createNewModel() {
// Replace this value with the project number listed in the Google
// APIs Console project.
var projectNumber = 'XXXXXXXX';
var id = 'mylanguageidmodel';
var storageDataLocation = 'languageidsample/language_id.txt';
// Returns immediately. Training happens asynchronously.
var result = Prediction.Trainedmodels.insert(
{
id: id,
storageDataLocation: storageDataLocation
},
projectNumber);
Logger.log(result);
}
// [END apps_script_prediction_create_new_model]
// [START apps_script_prediction_query_training_status]
/**
* Gets the training status from a prediction model.
* Logs the status.
*/
function queryTrainingStatus() {
// Replace this value with the project number listed in the Google
// APIs Console project.
var projectNumber = 'XXXXXXXX';
var id = 'mylanguageidmodel';
var result = Prediction.Trainedmodels.get(projectNumber, id);
Logger.log(result.trainingStatus);
}
// [END apps_script_prediction_query_training_status]
// [START apps_script_prediction_query_trailed_model]
/**
* Gets the language from a trained language model.
* Logs the language of the sentence.
*/
function queryTrainedModel() {
// Replace this value with the project number listed in the Google
// APIs Console project.
var projectNumber = 'XXXXXXXX';
var id = 'mylanguageidmodel';
var query = 'Este es un mensaje de prueba de ejemplo';
var prediction = Prediction.Trainedmodels.predict(
{
input:
{
csvInstance: [query]
}
},
projectNumber,
id);
// Logs Language: Spanish.
Logger.log('Language: ' + prediction.outputLabel);
}
// [END apps_script_prediction_query_trailed_model]