-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPolars.py
159 lines (149 loc) · 6.45 KB
/
Polars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy,polars,timeit, pandas as pd
from pathlib import Path
from utils.FileUtil import Download
# https://realpython.com/polars-python/
size = 5000
rng = numpy.random.default_rng(seed=19)
buildings_data = {
"sqft": rng.exponential(scale=1000, size=size),
"price": rng.exponential(scale=100_000, size=size),
"year": rng.integers(low=1995, high=2024, size=size),
"type": rng.choice(["A","B","C"], size=size)
}
def SelectContext():
print(f"=== {SelectContext.__name__} ===")
buildings = polars.DataFrame(buildings_data)
print(f"buildings: {buildings}")
print("sqft:")
print(buildings.select("sqft"))
print("sqft with expression:")
print(buildings.select(polars.col("sqft")))
print("sqft with expression sorted:")
print(buildings.select(polars.col("sqft").sort()))
def FilterContext():
print(f"\n=== {FilterContext.__name__} ===")
buildings = polars.DataFrame(buildings_data)
print(f"buildings: {buildings}")
after_2015 = buildings.filter(polars.col("year") > 2015)
print(f"Buildings after 2015: {after_2015.shape}")
print("Min year after 2015:")
min_after_2015 = after_2015.select(polars.col("year").min())
print(min_after_2015)
def Aggregation():
print(f"\n=== {Aggregation.__name__} ===")
buildings = polars.DataFrame(buildings_data)
print(f"buildings: {buildings}")
building_types = buildings.group_by("type").agg(
[
polars.mean("sqft").alias("mean_sqft"),
polars.median("year").alias("median_year"),
polars.median("price").alias("median_price"),
polars.len().alias("count")
]
)
print("Average sqft, median building year and price, and number of buildings for each building type:")
print(building_types)
def LazyAPI():
print(f"\n=== {LazyAPI.__name__} ===")
buildings = polars.LazyFrame(buildings_data)
print(f"buildings: {buildings}")
query = (buildings.with_columns(
(polars.col("price") / polars.col("sqft")).alias("price_per_sqft")
).filter(polars.col("price_per_sqft") > 100)
.filter(polars.col("year") < 2020)
)
print(f"Lazy query:")
print(query.explain())
#print("Lazy query plan:")
#print(query.show_graph())
print("Query result:")
result = query.collect()
print(result)
print("Query result summary:")
print(result.describe())
def ScanLargeData(url, path):
print(f"\n=== {ScanLargeData.__name__} ===")
Download(url, Path(path))
data = polars.scan_csv(Path(path))
print(f"data: {data}")
query = (
data
.filter((polars.col("Model Year") >= 2018))
.filter(
polars.col("Electric Vehicle Type") == "Battery Electric Vehicle (BEV)"
)
.group_by(["State", "Make"])
.agg(
polars.mean("Electric Range").alias("Average Electric Range"),
polars.min("Model Year").alias("Oldest Model Year"),
polars.len().alias("Number of Cars"),
)
.filter(polars.col("Average Electric Range") > 0)
.filter(polars.col("Number of Cars") > 5)
.sort(polars.col("Number of Cars"), descending=True)
)
print(f"Lazy query:")
print(query.explain())
#print("Lazy query plan:")
#print(query.show_graph())
result = query.collect()
print("Query result summary:")
print(result.describe())
print("Query result:")
print(result)
def ScanLargeDataPandas(url, path):
print(f"\n=== {ScanLargeDataPandas.__name__} ===")
Download(url, Path(path))
data = pd.read_csv(path)
print(f"data ({id(data)}), ndim: {data.ndim}, size: {data.size}, shape: {data.shape}")
print("\ndata.describe():")
print(data.describe())
print("\ndata.info():")
data.info()
print(data.dtypes)
print(data.head())
filter = (data["Model Year"] >= 2018) & (data["Electric Vehicle Type"] == "Battery Electric Vehicle (BEV)")
data = data[filter].groupby(["State", "Make"], sort=False, observed=True, as_index=False).agg( avg_electric_range=pd.NamedAgg(column="Electric Range", aggfunc="mean"), oldest_model_year=pd.NamedAgg(column="Model Year", aggfunc="min"), count=pd.NamedAgg(column="Model Year", aggfunc="count"))
filter = (data["avg_electric_range"] > 0) & (data["count"] > 5)
data = data[filter].sort_values(by=["count"], ascending=[False]) # Tie-breaks in C++ scores between Jana and Nori
print(data.head(5))
print(data.tail(5))
def PolarsLargeData(path):
data = polars.scan_csv(Path(path))
query = (
data
.filter((polars.col("Model Year") >= 2018))
.filter(
polars.col("Electric Vehicle Type") == "Battery Electric Vehicle (BEV)"
)
.group_by(["State", "Make"])
.agg(
polars.mean("Electric Range").alias("Average Electric Range"),
polars.min("Model Year").alias("Oldest Model Year"),
polars.len().alias("Number of Cars"),
)
.filter(polars.col("Average Electric Range") > 0)
.filter(polars.col("Number of Cars") > 5)
.sort(polars.col("Number of Cars"), descending=True)
)
query.collect()
def PandasLargeData(path):
data = pd.read_csv(path)
filter = (data["Model Year"] >= 2018) & (data["Electric Vehicle Type"] == "Battery Electric Vehicle (BEV)")
data = data[filter].groupby(["State", "Make"], sort=False, observed=True, as_index=False).agg( avg_electric_range=pd.NamedAgg(column="Electric Range", aggfunc="mean"), oldest_model_year=pd.NamedAgg(column="Model Year", aggfunc="min"), count=pd.NamedAgg(column="Model Year", aggfunc="count"))
filter = (data["avg_electric_range"] > 0) & (data["count"] > 5)
data = data[filter].sort_values(by=["count"], ascending=[False]) # Tie-breaks in C++ scores between Jana and Nori
def PandasPolarBenchmark(url, path):
print(f"\nPerformance comparison between Pandas and Polars:")
Download(url, Path(path))
t1 = timeit.Timer(lambda: PandasLargeData(path))
t2 = timeit.Timer(lambda: PolarsLargeData(path))
print(f"Pandas: {t1.timeit(number=10)}s, Polars: {t2.timeit(number=10)}s")
if __name__ == "__main__":
SelectContext()
FilterContext()
Aggregation()
LazyAPI()
ScanLargeData("https://data.wa.gov/api/views/f6w7-q2d2/rows.csv?accessType=DOWNLOAD", "/tmp/electric_cars.csv")
ScanLargeDataPandas("https://data.wa.gov/api/views/f6w7-q2d2/rows.csv?accessType=DOWNLOAD", "/tmp/electric_cars.csv")
PandasPolarBenchmark("https://data.wa.gov/api/views/f6w7-q2d2/rows.csv?accessType=DOWNLOAD", "/tmp/electric_cars.csv")