forked from lksshw/SRNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
executable file
·104 lines (74 loc) · 2.9 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#author: Niwhskal
#https://github.com/Niwhskal
import torch
import cfg
def build_discriminator_loss(x_true, x_fake):
d_loss = -torch.mean(torch.log(torch.clamp(x_true, cfg.epsilon, 1.0)) + torch.log(torch.clamp(1.0 - x_fake, cfg.epsilon, 1.0)))
return d_loss
def build_dice_loss(x_t, x_o):
iflat = x_o.view(-1)
tflat = x_t.view(-1)
intersection = (iflat*tflat).sum()
return 1. - torch.mean((2. * intersection + cfg.epsilon)/(iflat.sum() +tflat.sum()+ cfg.epsilon))
def build_l1_loss(x_t, x_o):
return torch.mean(torch.abs(x_t - x_o))
def build_l1_loss_with_mask(x_t, x_o, mask):
mask_ratio = 1. - mask.view(-1).sum() / torch.size(mask)
l1 = torch.abs(x_t - x_o)
return mask_ratio * torch.mean(l1 * mask) + (1. - mask_ratio) * torch.mean(l1 * (1. - mask))
def build_perceptual_loss(x):
l = []
for i, f in enumerate(x):
l.append(build_l1_loss(f[0], f[1]))
l = torch.stack(l, dim = 0)
l = l.sum()
return l
def build_gram_matrix(x):
x_shape = x.shape
c, h, w = x_shape[1], x_shape[2], x_shape[3]
matrix = x.view((-1, c, h * w))
matrix1 = torch.transpose(matrix, 1, 2)
gram = torch.matmul(matrix, matrix1) / (h * w * c)
return gram
def build_style_loss(x):
l = []
for i, f in enumerate(x):
f_shape = f[0].shape[0] * f[0].shape[1] *f[0].shape[2]
f_norm = 1. / f_shape
gram_true = build_gram_matrix(f[0])
gram_pred = build_gram_matrix(f[1])
l.append(f_norm * (build_l1_loss(gram_true, gram_pred)))
l = torch.stack(l, dim = 0)
l = l.sum()
return l
def build_vgg_loss(x):
splited = []
for i, f in enumerate(x):
splited.append(torch.chunk(f, 2))
l_per = build_perceptual_loss(splited)
l_style = build_style_loss(splited)
return l_per, l_style
def build_gan_loss(x_pred):
gen_loss = -torch.mean(torch.log(torch.clamp(x_pred, cfg.epsilon, 1.0)))
return gen_loss
def build_generator_loss(out_g, out_d, out_vgg, labels):
o_sk, o_t, o_b, o_f, mask_t = out_g
o_db_pred, o_df_pred = out_d
o_vgg = out_vgg
t_sk, t_t, t_b, t_f = labels
#skeleton loss
l_t_sk = cfg.lt_alpha * build_dice_loss(t_sk, o_sk)
l_t_l1 = build_l1_loss(t_t, o_t)
l_t = l_t_l1 + l_t_sk
#Background Inpainting module loss
l_b_gan = build_gan_loss(o_db_pred)
l_b_l1 = cfg.lb_beta * build_l1_loss(t_b, o_b)
l_b = l_b_gan + l_b_l1
l_f_gan = build_gan_loss(o_df_pred)
l_f_l1 = cfg.lf_theta_1 * build_l1_loss(t_f, o_f)
l_f_vgg_per, l_f_vgg_style = build_vgg_loss(o_vgg)
l_f_vgg_per = cfg.lf_theta_2 * l_f_vgg_per
l_f_vgg_style = cfg.lf_theta_3 * l_f_vgg_style
l_f = l_f_gan + l_f_vgg_per + l_f_vgg_style + l_f_l1
l = cfg.lt * l_t + cfg.lb * l_b + cfg.lf * l_f
return l, [l_t_sk, l_t_l1, l_b_gan, l_b_l1, l_f_gan, l_f_l1, l_f_vgg_per, l_f_vgg_style]