forked from WenZhihao666/G2P2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_test_amazon.py
238 lines (194 loc) · 8.04 KB
/
main_test_amazon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import numpy as np
import argparse
import torch
from random import sample
import random
import math
import time
from model import CLIP, tokenize
from torch import nn, optim
from sklearn import preprocessing
from sklearn.metrics import accuracy_score, f1_score
from multitask_amazon import multitask_data_generator
from model_g_coop import CoOp
import json
from data_graph import DataHelper
from torch.utils.data import DataLoader
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
def main(args):
setup_seed(seed)
clip_model = CLIP(args)
clip_model.load_state_dict(
torch.load(
"./res/{}_bak/node_ttgt_8&12_10.pkl".format(args.data_name),
map_location=device,
)
)
task_list, train_idx, val_idx, test_idx = multitask_data_generator(
lab_list, labeled_ids, labels, args.k_spt, args.k_val, args.k_qry, args.n_way
)
all_acc = []
f1_list = []
for j in range(len(task_list)):
train_idx_ts = torch.from_numpy(np.array(train_idx[j])).to(device)
val_idx_ts = torch.from_numpy(np.array(val_idx[j])).to(device)
test_idx_ts = torch.from_numpy(np.array(test_idx[j])).to(device)
train_truth = []
for a in train_idx[j]:
train_truth.append(id_lab_dict[str(a)])
val_truth = []
for a in val_idx[j]:
val_truth.append(id_lab_dict[str(a)])
test_truth = []
for a in test_idx[j]:
test_truth.append(id_lab_dict[str(a)])
task_lables_arr = np.array(labels)[task_list[j]]
task_labels_dict = dict()
for i in range(task_lables_arr.shape[0]):
task_labels_dict[task_lables_arr[i]] = i
train_truth_ts = [
task_labels_dict[train_truth[i]] for i in range(len(train_truth))
]
train_truth_ts = torch.from_numpy(np.array(train_truth_ts)).to(device)
val_truth_ts = [task_labels_dict[val_truth[i]]
for i in range(len(val_truth))]
val_truth_ts = torch.from_numpy(np.array(val_truth_ts)).to(device)
test_truth_ts = [
task_labels_dict[test_truth[i]] for i in range(len(test_truth))
]
test_truth_ts = torch.from_numpy(np.array(test_truth_ts)).to(device)
task_lables = task_lables_arr.tolist()
Data = DataHelper(arr_edge_index, args, train_idx[j])
loader = DataLoader(
Data, batch_size=args.batch_size, shuffle=False, num_workers=0
)
for i_batch, sample_batched in enumerate(loader):
s_n = sample_batched["s_n"].numpy()
t_n = sample_batched["t_n"].numpy()
s_n = s_n.reshape(args.num_labels, args.k_spt)
t_n = t_n.reshape(args.num_labels, args.k_spt * args.neigh_num)
temp = []
for i in range(args.num_labels):
temp.append(np.concatenate((s_n[i], t_n[i])))
g_texts = []
for i in range(len(temp)):
g_text = [new_dict[a] for a in temp[i]]
g_texts.append(g_text)
model = CoOp(args, task_lables, clip_model, g_texts, device)
best_val = 0
patience = 10
counter = 0
for epoch in range(1, args.ft_epoch + 1):
# print('----epoch:' + str(epoch))
model.train()
train_logits = model.forward(
train_idx_ts, node_f, edge_index, train_truth_ts
)
model.eval()
with torch.no_grad():
res = model.forward(
val_idx_ts, node_f, edge_index, val_truth_ts, training=False
)
val_acc = accuracy_score(
val_truth_ts.cpu(), res.argmax(dim=1).cpu())
if val_acc <= best_val:
counter += 1
if counter >= patience:
break
else:
best_val = val_acc
torch.save(
model, "./res/{}/g_coop.pkl".format(args.data_name))
counter = 0
# print('{}th_task_best_val'.format(j), round(best_val, 4))
best_model = torch.load("./res/{}/g_coop.pkl".format(args.data_name))
best_model.eval()
with torch.no_grad():
res = model.forward(
test_idx_ts, node_f, edge_index, test_truth_ts, training=False
)
test_acc = accuracy_score(
test_truth_ts.cpu(), res.argmax(dim=1).cpu())
all_acc.append(test_acc)
f1 = f1_score(test_truth_ts.cpu(), res.argmax(
dim=1).cpu(), average="macro")
f1_list.append(f1)
ans = round(np.mean(all_acc).item(), 4)
print("acc", ans)
ans = round(np.mean(f1_list).item(), 4)
print("macro f1", ans)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--aggregation_times", type=int, default=2, help="Aggregation times"
)
parser.add_argument("--ft_epoch", type=int,
default=50, help="fine-tune epoch")
parser.add_argument("--lr", type=float, default=2e-5)
parser.add_argument("--batch_size", type=int, default=1000)
parser.add_argument("--gnn_input", type=int, default=128)
parser.add_argument("--gnn_hid", type=int, default=128)
parser.add_argument("--gnn_output", type=int, default=128)
parser.add_argument("--edge_coef", type=float, default=0.1)
parser.add_argument("--neigh_num", type=int, default=3)
parser.add_argument("--num_labels", type=int, default=5)
parser.add_argument("--k_spt", type=int, default=5)
parser.add_argument("--k_val", type=int, default=5)
parser.add_argument("--k_qry", type=int, default=50)
parser.add_argument("--n_way", type=int, default=5)
parser.add_argument("--context_length", type=int, default=128)
parser.add_argument("--coop_n_ctx", type=int, default=4)
parser.add_argument("--prompt_lr", type=float, default=0.01)
parser.add_argument("--position", type=str, default="end")
parser.add_argument("--class_specific", type=bool, default=False)
parser.add_argument("--ctx_init", type=bool, default=True)
parser.add_argument("--embed_dim", type=int, default=128)
parser.add_argument("--transformer_heads", type=int, default=8)
parser.add_argument("--transformer_layers", type=int, default=12)
parser.add_argument("--transformer_width", type=int, default=512)
parser.add_argument("--vocab_size", type=int, default=49408)
parser.add_argument("--data_name", type=str, default="Musical_Instruments")
parser.add_argument("--gpu", type=int, default=1)
args = parser.parse_args()
device = torch.device(
"cuda:{}".format(args.gpu) if torch.cuda.is_available() else "cpu"
)
print("device:", device)
num_nodes = 0
tit_list = []
tit_dict = json.load(open("./data/{}_text.json".format(args.data_name)))
new_dict = {}
for i in range(len(tit_dict)):
num_nodes += 1
new_dict[i] = tit_dict[str(i)]
print("num_nodes", num_nodes)
edge_index = np.load("./data/{}_edge.npy".format(args.data_name))
arr_edge_index = edge_index
edge_index = torch.from_numpy(edge_index).to(device)
node_f = np.load("./data/{}_f_m.npy".format(args.data_name))
node_f = preprocessing.StandardScaler().fit_transform(node_f)
node_f = torch.from_numpy(node_f).to(device)
id_lab_dict = json.load(
open("./data/{}_id_labels.json".format(args.data_name)))
id_lab_list = sorted(id_lab_dict.items(), key=lambda d: int(d[0]))
labeled_ids = []
lab_list = []
for i in id_lab_list:
if i[1] != "nan" or i[1] != "" or i[1] != " ":
labeled_ids.append(int(i[0]))
lab_list.append(i[1])
labels = sorted(list(set(lab_list)))
start = time.perf_counter()
all_acc_list = []
all_macf1_list = []
seed = 1
print("seed", seed)
main(args)
end = time.perf_counter()
print("time consuming {:.2f}".format(end - start))