-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoment.py
1009 lines (877 loc) · 54.3 KB
/
moment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Module containing definitions for applications involving neutrino oscillations and magnetic moment"""
import qutip as qp
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import numpy.random as rnd
from scipy import special, integrate, optimize, interpolate
import pathos
hbar = 6.582E-16 #h-bar in eV*s
mu_b = 5.788E-5 #Bohr magneton in ev/T
B_gal = 4.2E-10 #Mean galactic B-field in T
c = 2.998E8 #Speed of light in m/s
kpc = 30.9E18 #Kiloparsec in meters
eV = 1.602E-19 #eV in J
erg = 1e-7 #erg in J
me = 5.11E5 #electron mass in eV
al = 0.007297352 #Fine structure constant
epsilon0 = 5.526349406e7 #Vacuum permittivity in e^2/(eV m)
mol = 6.022e23
# The operators to determine the diagonal elements of the density matrix
rho11 = qp.basis(6, 0) * qp.basis(6, 0).dag()
rho22 = qp.basis(6, 1) * qp.basis(6, 1).dag()
rho33 = qp.basis(6, 2) * qp.basis(6, 2).dag()
rho44 = qp.basis(6, 3) * qp.basis(6, 3).dag()
rho55 = qp.basis(6, 4) * qp.basis(6, 4).dag()
rho66 = qp.basis(6, 5) * qp.basis(6, 5).dag()
# Neutrino mixing parameters - NuFit 5.1, normal ordering
theta12 = 33.44 * np.pi/180.
theta13 = 8.57 * np.pi/180.
theta23 = 49.2 * np.pi/180.
m21 = 7.42e-5
m31 = 2.515e-3
m_nh = [0, np.sqrt(m21), np.sqrt(m31)]
m_ih = [np.sqrt(m31), np.sqrt(m31+m21), 0]
# error on neutrino mixing parameters
d_theta12 = 0.76 * np.pi/180.
d_theta13 = 0.13 * np.pi/180.
d_theta23 = 1.2 * np.pi/180.
d_m21 = 0.21e-5
d_m31 = 0.028e-3
# unit conversion
MeV = 1e6
GeV = 1e9
TeV = 1e12
PeV = 1e15
# flavor structures of flavor-universal and muon-only magnetic moments
M_all_flavors = np.array([[1,0,0],[0,1,0],[0,0,1]])
M_mu_only = np.array([[0,0,0],[0,1,0],[0,0,0]])
n_e_HK = 374e9*mol*10/18 #Number of target electrons/protons in HK
n_O_HK = 374e9*mol/18 #Number of target oxygen atoms in HK
n_ar_DN = 40e9*mol/39.95 #number of target Argon atoms in DUNE
n_e_DN = 40e9*mol*18/39.95 #number of target electrons in DUNE
#---------------------------------------------------------------------------
def PMNS (theta12, theta13, theta23):
"Computes the PMNS matrix for given mixing angles"
rot23 = np.array([[1, 0, 0, 0, 0, 0], [0, np.cos(theta23), np.sin(theta23), 0, 0, 0],
[0, -np.sin(theta23), np.cos(theta23), 0, 0, 0], [0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, np.cos(theta23), np.sin(theta23)], [0, 0, 0, 0, -np.sin(theta23), np.cos(theta23)]])
rot13 = np.array([[np.cos(theta13), 0, np.sin(theta13), 0, 0, 0], [0, 1, 0, 0, 0, 0],
[-np.sin(theta13), 0, np.cos(theta13), 0, 0, 0], [0, 0, 0, np.cos(theta13), 0, np.sin(theta13)],
[0, 0, 0, 0, 1, 0], [0, 0, 0, -np.sin(theta13), 0, np.cos(theta13)]])
rot12 = np.array([[np.cos(theta12), np.sin(theta12), 0, 0, 0, 0], [-np.sin(theta12), np.cos(theta12), 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0], [0, 0, 0, np.cos(theta12), np.sin(theta12), 0],
[0, 0, 0, -np.sin(theta12), np.cos(theta12), 0], [0, 0, 0, 0, 0, 1]])
return np.linalg.multi_dot([rot23, rot13, rot12])
#---------------------------------------------------------------------------
def Hx(nu1, nu2):
"""Generates magnetic moment hamiltonian between flavors nu1 and nu2 for B-field
in x direction"""
return 1/(hbar*c) * 0.5 * 1j * (qp.basis(6, nu1) * qp.basis(6, nu2+3).dag()
- qp.basis(6, nu2+3) * qp.basis(6, nu1).dag())
def Hy(nu1, nu2):
"""Generates magnetic moment hamiltonian between flavors nu1 and nu2 for B-field
in y direction"""
return 1/(hbar*c) * 0.5 * (qp.basis(6, nu1) * qp.basis(6, nu2+3).dag()
+ qp.basis(6, nu2+3) * qp.basis(6, nu1).dag())
#--------------------------------------------------------------------
class neutrino_propagator:
"""Routines for generating the Galactic magnetic field structure
and propagating neutrinos through it."""
def __init__(self, d=10*kpc, theta_los=0., phi_los=np.pi, a_B_coh=0., Bturb=2.,
outer_scale=0.01, mu_range=np.linspace(0, 4e-13, 20)*mu_b):
"""Initialize the object and generate initial B field map.
Parameters:
d: distance to the neutrino source
phi_los: orientation of the line of sight along the Galactic plane.
0 corresponds to a l.o.s. pointing away from the Galactic Center
theta_los: orientation of the line of sight relative to the Galactic plane
a_B_coh: nuisance parameter describing the shift in the strength
of thw homogeneous (large-scale) magnetic field relative
to the fiducial model from https://arxiv.org/abs/0704.0458
Bturb: field strength of turbulent magnetic field [muG]
outer_scale: outer scale of B-field turbulence in kpc
mu_range: the range of magnetic moment values
over which the survival probability is tabulated"""
self.d = d
self.theta_los = theta_los
self.phi_los = phi_los
# load cross-section data [in 1e-43 cm^2]
self.sigma = {}
self.sigma['e_CC'] = np.loadtxt('./cross_sections/nu_e_CC.csv').transpose()
self.sigma['bare_CC'] = np.loadtxt('./cross_sections/nubar_CC.csv').transpose()
self.sigma['e_ES'] = np.loadtxt('./cross_sections/nu_e_ES.csv').transpose()
self.sigma['bare_ES'] = np.loadtxt('./cross_sections/nu_bar_e_ES.csv').transpose()
self.sigma['e_O'] = np.loadtxt('./cross_sections/nu_e_O.csv').transpose()
self.sigma['e_O'][1] *= 1e43
self.sigma['bare_O'] = np.loadtxt('./cross_sections/nubar_e_O.csv').transpose()
self.sigma['bare_O'][1] *= 1e43
self.sigma['IBD'] = np.loadtxt('./cross_sections/IBD.csv').transpose()
self.sigma['IBD'][1] *= 1e43
self.sigma['x_NC'] = np.loadtxt('./cross_sections/nu_NC.csv').transpose()
self.sigma['barx_NC'] = np.loadtxt('./cross_sections/nu_bar_NC.csv').transpose()
self.sigma['x_ES'] = np.loadtxt('./cross_sections/nu_x_ES.csv').transpose()
self.sigma['barx_ES'] = np.loadtxt('./cross_sections/nu_bar_x_ES.csv').transpose()
self.sigma['HK'] = [[self.sigma['e_ES'], self.sigma['e_O']],
[self.sigma['x_ES'], [[0],[0]]]]
self.sigma['bar_HK'] = [[self.sigma['bare_ES'], self.sigma['bare_O'], self.sigma['IBD']],
[self.sigma['barx_ES'], [[0],[0]], [[0],[0]]]]
self.sigma['DN'] = [[self.sigma['e_CC'], self.sigma['e_ES']],
[self.sigma['x_NC'], self.sigma['x_ES']]]
self.sigma['bar_DN'] = [[self.sigma['bare_CC'], self.sigma['bare_ES']],
[self.sigma['barx_NC'], self.sigma['barx_ES']]]
# generate default B field map
self.generate_B_field_gal(d=d, theta_los=theta_los, phi_los=phi_los,
a_B_coh=a_B_coh, Bturb=Bturb, outer_scale=outer_scale,
mu_range=mu_range)
#-----------------------------------------------------------------------
def sigma_extract(self, sigma, x):
"""Returns the cross section for neutrino energy x in m^2"""
if x < sigma[0][0] or x > sigma[0][-1]:
return 0
else:
return np.interp(x, sigma[0], sigma[1])*1e-47
#-----------------------------------------------------------------------
def generate_B_field_gal(self, d=10*kpc, theta_los=0., phi_los=np.pi, a_B_coh=0., Bturb=2.,
outer_scale=0.01, mu_range=np.linspace(0, 4e-13, 20)*mu_b,
random_B_coh=False, plot=False, cpus=1):
"""Generate a new Galactic B field map with the given parameters
(and randomized turbulence).
Parameters:
d: distance to the neutrino source
phi_los: orientation of the line of sight along the Galactic plane.
0 corresponds to a l.o.s. pointing away from the Galactic Center
theta_los: orientation of the line of sight relative to the Galactic plane
a_B_coh: nuisance parameter describing the shift in the strength
of thw homogeneous (large-scale) magnetic field relative
to the fiducial model from https://arxiv.org/abs/0704.0458
Bturb: field strength of turbulent magnetic field [muG]
outer_scale: outer scale of B-field turbulence in kpc
mu_range: the range of magnetic moment values
over which the survival probability is tabulated
random_B_coh: if True, pick random B fields for each of the regions
in the coherent B field model. Values are chosen from
a Gaussian of width 1 muG
plot: if True, create plot of coherent B-field map
cpus: number of CPUs to use in tabulating oscillation
probabilities"""
self.d = d
self.theta_los = theta_los
self.phi_los = phi_los
N = 1000 # number of sampling points along line of sight
d_table = np.linspace(0, d/kpc, N) # dicretized line-of-sight coordinates
lout = outer_scale*kpc # outer scale of turbulence
kmin = 2*np.pi/(1e-1*lout)
kmax = N * 2 * np.pi/d + kmin
R = np.linspace(kmin, kmax, int(N/2)+1)
Btemp = [np.random.normal(0, R[i]**(-11/6)) if i in [0, int(N/2)]
else np.random.normal(0, R[i]**(-11/6))*np.exp(1j * np.random.uniform(0, 1) * np.pi)
for i in range(int(N/2)+1)]
Bk1 = np.array([Btemp[i] if i <= N/2 else np.conjugate(Btemp[int(N/2)-1-i]) for i in range(N)])
Bx = np.real(np.fft.ifft(Bk1))
Bx = Bx*np.sqrt(N)*Bturb*1e-10/(np.sqrt(np.sum(np.abs(Bx)**2))) # factor 1e-10: conversion from muG to Tesla
Btemp = [np.random.normal(0, R[i]**(-11/6)) if i in [0, int(N/2)]
else np.random.normal(0, R[i]**(-11/6))*np.exp(1j * np.random.uniform(0, 1) * 2 * np.pi)
for i in range(int(N/2)+1)] # FIXME what is the origin of the factor of 2? (JK)
Bk2 = np.array([Btemp[i] if i <= N/2 else np.conjugate(Btemp[int(N/2)-1-i]) for i in range(N)])
By = np.real(np.fft.ifft(Bk2))
By = By*np.sqrt(N)*Bturb*1e-10/(np.sqrt(np.sum(np.abs(By)**2)))
self.Banx = interpolate.interp1d(d_table, Bx)
self.Bany = interpolate.interp1d(d_table, By)
# coherent magnetic field
pitch_angle = 11.5*np.pi/180. # pitch angle (https://arxiv.org/abs/0704.0458)
pitch = np.tan(pitch_angle)
phi0_table = np.array([360, 300, 270, 225, 180, 140, 105, 40]) * np.pi/180.
# azimuthal angles of arm boundaries relative
# to our x axis; read from fig. 4 in
# https://arxiv.org/abs/0704.0458
B_coh_table = (1 + a_B_coh) * 1e-10 * np.array([
1.0, # molecular ring between r=3 kpc and r=5 kpc
1.5, -1.0, -0.5, -0.05, -1.0, -0.5, -0.3, -0.7 ]) # arms
r_B_table = np.array([3.7, # approx. radius (in kpc) at which B field was read from the plot
7.0, 7.7, 7.6, 12.2, 16.7, 17.3, 7.0, 6.5 ])
X_Earth = np.array([8.5,0,0]) # our location in the Milky Way
X_los_table = d_table[None,:] * np.array([np.cos(theta_los) * np.cos(phi_los), # l.o.s. (x,y,z) coordinates
np.cos(theta_los) * np.sin(phi_los),
-np.sin(theta_los)])[:,None] + X_Earth[:,None]
r_los_table = np.sqrt(X_los_table[0]**2 + X_los_table[1]**2)
# radial coordinate in Galactic plane
phi_los_table = np.arctan2(X_los_table[1], X_los_table[0])
# azimuthal coordinate in Galactic plane
Bcoh_map = np.zeros((3,N)) # coherent B field in the galactic plane;
# the first two entries along axis 0
# correspond to the two axes of that plane;
# axis 1 corresponds to the l.o.s. coordinate
# projected onto the Galactic plane
# random coherent B fields?
if random_B_coh:
B_coh_table = (1 + a_B_coh) * 1e-10 * rnd.normal(scale=1., size=len(B_coh_table))
# B-field of molecular ring
ii = ((3<r_los_table) & (r_los_table<5))
Bcoh_map[:2,ii] = B_coh_table[0] * r_B_table[0] / r_los_table[ii] \
* np.array([-np.sin(phi_los_table[ii]), np.cos(phi_los_table[ii])])
# B-field in spiral arm region: loop until we've left the galaxy or the l.o.s.
k = 0
while True:
for phi0, B, r_B in zip(phi0_table, B_coh_table[1:], r_B_table[1:]):
# find l.o.s. points outside current spiral (but still within the galaxy)
r_spiral_table = 5*np.exp(pitch*(phi_los_table - phi0 + k*2*np.pi))
ii = ( (r_los_table > 5) & (r_los_table < 20) & (r_los_table >= r_spiral_table) )
Bcoh_map[:2,ii] = B * r_B / r_los_table[ii] \
* np.array([-np.sin(phi_los_table[ii] - pitch_angle),
np.cos(phi_los_table[ii] - pitch_angle)])
k = k + 1
if np.count_nonzero(r_los_table[ii]) == 0:
break
# set B field to zero outside the Galactic plane (i.e. more than 1 kpc from the midplane)
Bcoh_map[:, np.abs(X_los_table[2]) > 1] = 0.
# transform from B field components in the Galactic plane to components
# perpendicular to the line of sight.
# The rotation matrix V rotates the line of sight onto the z-axis
V = np.array([ [-np.cos(phi_los)**2 * np.sin(theta_los) + np.sin(phi_los)**2,
np.cos(phi_los) * np.sin(phi_los) * (-np.sin(theta_los) - 1),
-np.cos(phi_los) * np.cos(theta_los) ],
[ np.cos(phi_los) * np.sin(phi_los) * (-np.sin(theta_los) - 1),
np.cos(phi_los)**2 - np.sin(theta_los) * np.sin(phi_los)**2,
-np.sin(phi_los) * np.cos(theta_los) ],
[ np.cos(phi_los) * np.cos(theta_los),
np.sin(phi_los) * np.cos(theta_los),
-np.sin(theta_los) ] ])
Bcoh_map = np.dot(V, Bcoh_map)
# interpolate coherent B field along line of sight
self.Bcoh_x = interpolate.interp1d(d_table, Bcoh_map[0])
self.Bcoh_y = interpolate.interp1d(d_table, Bcoh_map[1])
# plots of coherent B-field component
if plot:
fig = plt.figure(figsize=(14,6))
ax1 = plt.subplot(121)
# load background image of Milky Way
mw_img = plt.imread('data/milky-way.jpg')
d_img = 41.73 # kpc
ax1.imshow(mw_img, extent=[-d_img/2.,d_img/2.,-d_img/2.,d_img/2.],
cmap='gray', vmin=0, vmax=155)
# generate 2d map of B field strength for the plot
x_table = np.linspace(-20., 20., 300) # x/y range of B field map for plot
r_table = np.sqrt(x_table[:,None]**2 + x_table[None,:]**2)
phi_table = np.arctan2(x_table[None,:], x_table[:,None])
B_table = np.zeros((len(x_table), len(x_table)))
ii = ((3<r_table) & (r_table<5)) # molecular ring
B_table[ii] = B_coh_table[0] * r_B_table[0] / r_table[ii]
k = 0 # spiral arms
while True:
for phi0, B, r_B in zip(phi0_table, B_coh_table[1:], r_B_table[1:]):
# find l.o.s. points outside current spiral (but still within the galaxy)
r_spiral_table = 5*np.exp(pitch*(phi_table - phi0 + k*2*np.pi))
ii = ( (r_table > 5) & (r_table < 20) & (r_table >= r_spiral_table) )
B_table[ii] = B * r_B / r_table[ii]
k = k + 1
if np.count_nonzero(r_table[ii]) == 0:
break
# clip_path = matplotlib.path.Path([[0,-20],[0,0],[-20,25],[-20,-20],[0,-20]])
clip_path = matplotlib.path.Path([[0,-20],[0,0],[20,25],[20,-20],[0,-20]])
clip_patch = matplotlib.patches.PathPatch(clip_path, fc='None', ec='#00000077')
ax1.add_patch(clip_patch)
B_plot = ax1.imshow(B_table.T*1e10, vmin=-2., vmax=2., origin='lower',
extent=[min(x_table), max(x_table), min(x_table), max(x_table)],
cmap='RdYlBu', clip_path=clip_patch, clip_on=True, alpha=0.7)
# draw contours of spiral arms and other decorations
phi_table_plot = np.linspace(0, 3*np.pi, 100)
for phi0 in phi0_table:
ax1.plot(5*np.exp(pitch*phi_table_plot) * np.cos(phi_table_plot + phi0),
5*np.exp(pitch*phi_table_plot) * np.sin(phi_table_plot + phi0),
color='#99000077', lw=1)
ax1.add_artist(plt.Circle((0,0), 5, ec='#99000077', color='None', lw=1))
ax1.add_artist(plt.Circle((0,0), 3, ec='#99000077', color='None', lw=1))
ax1.annotate(r'$\boldsymbol{\pmb\bigoplus}$', X_Earth[:2], color='#00eeee',
ha='center', va='center', size=20)
ax1.arrow(X_Earth[0], X_Earth[1],
r_los_table[-1]*np.cos(phi_los_table[-1]) - X_Earth[0],
r_los_table[-1]*np.sin(phi_los_table[-1]) - X_Earth[1],
color='#44ffff', length_includes_head=True, width=0.1,
head_width=0.8, zorder=5)
ax1.set_xlim(-15,15)
ax1.set_ylim(-15,15)
# ax1.axis('off')
ax1.xaxis.set_ticks(np.arange(-15, 15.1, 5))
ax1.yaxis.set_ticks(np.arange(-15, 15.1, 5))
ax1.set_xlabel('x [kpc]') # note: this plot is rotated 90 degrees clockwise
ax1.set_ylabel('y [kpc]') # compared to fig. 4 of https://arxiv.org/abs/0704.0458
ax1.grid()
fig.colorbar(B_plot, ax=ax1, shrink=0.87, aspect=18, alpha=0.7, extend='both')
ax1.annotate(r'$\vec{B}$~[$\mu$G]', (15,16.3), annotation_clip=False)
ax2 = plt.subplot(122)
ax2.plot(r_los_table,np.sqrt(Bcoh_map[0]**2+Bcoh_map[1]**2), label=r'$|B|$')
ax2.plot(r_los_table, 1e10*Bcoh_map[0], label=r'$B_x$ (coh.)')
ax2.plot(r_los_table, 1e10*Bcoh_map[1], label=r'$B_y$ (coh.)', ls='--')
# ax2.plot(r_los_table, 1e10*Bx, label=r'$B_x$ (turb.)')
# ax2.plot(r_los_table, 1e10*By, label=r'$B_y$ (turb.)', ls='--')
ax2.set_ylim(-2.0,2.0)
ax2.set_xlabel('galactic radius [kpc]')
ax2.set_ylabel('B field [$\mu$G]')
ax2.legend(loc='upper right')
ax2.grid()
plt.show()
# tabulate survival probabilities
rho0 = qp.basis(2, 0) * qp.basis(2, 0).dag() # initial density matrix
op1 = qp.basis(2, 0) * qp.basis(2, 0).dag() # operators to track the diagonal elements
op2 = qp.basis(2, 1) * qp.basis(2, 1).dag() # of the density matrix
H_dx = 0.5 * (+1j) * qp.Qobj([[ 0, 1],
[ -1, 0]])*kpc/(hbar*c)
H_dy = 0.5 * (-1j) * qp.Qobj([[ 0, 1j],
[ 1j, 0]])*kpc/(hbar*c)
dist = np.linspace(0, d/kpc, 100)
options = qp.Options(nsteps=1E6)
def B_varx(t, args):
"Generate variable B-field"
if t <= d/kpc:
return self.Bcoh_x(t) + self.Banx(t)
else:
return 0
def B_vary(t, args):
"Generate variable B-field"
if t <= d/kpc:
return self.Bcoh_y(t) + self.Bany(t)
else:
return 0
def P_surv(mu):
"Compute the survival probability"
H_v = [[mu*H_dx, B_varx], [mu*H_dy, B_vary]]
result = qp.mesolve(H_v, rho0, dist, e_ops=[op1, op2],
options=qp.Options(nsteps=1E8))
return result.expect[0][-1]
if cpus > 1:
with pathos.pools.ProcessPool(nodes=cpus) as pool:
pool.restart() # not sure why this is necessary, but without it,
# the code sometimes doesn't "forget" old results
Ps = np.array(pool.map(lambda mu: P_surv(mu), mu_range))
else:
Ps = np.array([P_surv(mu) for mu in mu_range])
# mus = np.linspace(0, np.pi, 200)
# Ps = np.array([1-np.sin(mus[i])**2 for i in range(200)])
# if len(mu_range) >= 4:
# self.P_app = interpolate.interp1d(mu_range, Ps, 'cubic')
# elif len(mu_range) >= 2:
if len(mu_range) >= 2:
self.P_app = interpolate.interp1d(mu_range, Ps, 'linear')
elif len(mu_range) == 1:
self.P_app = lambda x: Ps[0]
else:
raise ValueError('invalid mu_range')
if plot:
return fig
#-----------------------------------------------------------------------
def generate_B_field_extragal(self, d=1e6*kpc, d_in_cluster=1e4*kpc, B_cluster=1.,
B_extragal=0.005, Nbs=1, verbosity=0):
"""Generate new extra-galactic B field maps with the given parameters
(and randomized turbulence).
Parameters:
d: distance to the neutrino source.
If this is a list of two elements, the are interpreted
as a distance range. For each field profile, a random
distance within that range will be chosen (from a uniform
distribution as the larger number of sources at larger
distances is compensated by the lower flux from ecah source)
d_in_cluster: distance traveled inside galaxy cluster
B_cluster: intracluster magnetic field [muG]
B_extragal: magnetic field in between galaxy clusters [muG]
Nbs: number of B-field profiles to generate
verbosity: if > 0, print out extra status information"""
if hasattr(d, '__iter__'):
if len(d) == 2:
self.d_min = d[0]
self.d_max = d[1]
self.d = rnd.uniform(self.d_min, self.d_max, size=Nbs)
else:
raise ValueError("don't know how to interpret given SN distance")
else:
self.d = np.ones(Nbs) * d
N = 1000 # number of sampling points along line of sight
Nc = 100 # number of sampling points for cluster magnetic fields
Nb = 1000 # number of sampling points for intercluster magnetic field
B_cluster_table = np.random.normal(scale=B_cluster, size=Nbs)
B_extragal_table = np.random.normal(scale=B_extragal, size=Nbs)
# Generate the turbulent intracluster magnetic field
if verbosity > 0:
print("generating intracluster field - x direction ...")
lout = 1e3*kpc # outer scale of turbulence
kmin = 2*np.pi/lout
kmax = Nc * np.pi/d_in_cluster + kmin
R = np.linspace(kmin, kmax, int(Nc/2)+1)
Btemp = np.array([[np.random.normal(0, R[i]**(-11/6)) if i in [0, int(Nc/2)]
else np.random.normal(0, R[i]**(-11/6))
* np.exp(1j * np.random.uniform(0, 1) * np.pi)
for i in range(int(Nc/2)+1)] for j in range(Nbs)])
# Btemp = np.array([ np.random.normal(scale=R[i]**(-11/6), size=Nbs)
# * (1 if i in [0, int(Nc/2)]
# else np.exp(1j * np.random.uniform(size=Nbs) * np.pi))
# for i in range(int(Nc/2)+1) ]).T
# # faster and more Pythonic, but not really necessary here
Bk1 = np.array([[Btemp[j][i] if i <= Nc/2
else np.conjugate(Btemp[j][int(Nc//2)-1-i])
for i in range(Nc)] for j in range(Nbs)])
# FIXME: replaced N -> Nc (and similarly below)
Bx = [np.real(np.fft.ifft(Bk1[j])) for j in range(Nbs)]
Bx_c = [Bx[j]*np.sqrt(N)*B_cluster_table[j]*1e-10/(np.sqrt(np.sum(np.abs(Bx[j])**2)))
for j in range(Nbs)]
# factor 1e-10: B field conversion from \muG to Tesla
if verbosity > 0:
print("generating intracluster field - y direction ...")
Btemp = np.array([[np.random.normal(0, R[i]**(-11/6)) if i in [0, int(Nc/2)]
else np.random.normal(0, R[i]**(-11/6))
* np.exp(1j * np.random.uniform(0, 1) * 2 * np.pi)
for i in range(int(Nc/2)+1)] for j in range(Nbs)])
Bk2 = np.array([[Btemp[j][i] if i <= Nc/2
else np.conjugate(Btemp[j][int(Nc/2)-1-i])
for i in range(Nc)] for j in range(Nbs)])
By = [np.real(np.fft.ifft(Bk2[j])) for j in range(Nbs)]
By_c = [By[j]*np.sqrt(N)*B_cluster_table[j]*1e-10/(np.sqrt(np.sum(np.abs(By[j])**2)))
for j in range(Nbs)]
# Generate the turbulent intergalactic magnetic field
if verbosity > 0:
print("generating intercluster field - x direction ...")
lout = 1e4*kpc # outer scale of turbulence
kmin = 2*np.pi/lout
kmax = np.array([ Nb * 2 * np.pi/(d - 2*d_in_cluster) + kmin for d in self.d ])
R = np.array([ np.linspace(kmin, kk, int(Nb/2)+1) for kk in kmax ])
Btemp = np.array([[np.random.normal(0, R[j][i]**(-11/6)) if i in [0, int(Nb/2)]
else np.random.normal(0, R[j][i]**(-11/6))
* np.exp(1j * np.random.uniform(0, 1) * np.pi)
for i in range(int(Nb/2)+1)] for j in range(Nbs)])
Bk1 = np.array([[Btemp[j][i] if i <= Nb/2
else np.conjugate(Btemp[j][int(Nb/2)-1-i])
for i in range(Nb)] for j in range(Nbs)])
Bx = [np.real(np.fft.ifft(Bk1[j])) for j in range(Nbs)]
Bx = [Bx[j]*np.sqrt(N)*B_extragal_table[j]*1e-10/(np.sqrt(np.sum(np.abs(Bx[j])**2)))
for j in range(Nbs)]
if verbosity > 0:
print("generating intercluster field - y direction ...")
Btemp = np.array([[np.random.normal(0, R[j][i]**(-11/6)) if i in [0, int(Nb/2)]
else np.random.normal(0, R[j][i]**(-11/6))
* np.exp(1j * np.random.uniform(0, 1) * 2 * np.pi)
for i in range(int(Nb/2)+1)] for j in range(Nbs)])
Bk2 = np.array([[Btemp[j][i] if i <= Nb/2
else np.conjugate(Btemp[j][int(Nb/2)-1-i])
for i in range(Nb)] for j in range(Nbs)])
By = [np.real(np.fft.ifft(Bk2[j])) for j in range(Nbs)]
By = [By[j]*np.sqrt(N)*B_extragal_table[j]*1e-10/(np.sqrt(np.sum(np.abs(By[j])**2)))
for j in range(Nbs)]
d_table = np.array([
np.concatenate(( np.linspace(0, d_in_cluster, int(Nc/2)),
np.linspace(d_in_cluster+0.001*kpc, d-d_in_cluster, Nb),
np.linspace(d-d_in_cluster+0.001*kpc, d, int(Nc/2)) )) / kpc
for d in self.d])
self.B_extragal_x = [ interpolate.interp1d(d_table[j],
np.concatenate((Bx_c[j][:int(Nc/2)], Bx[j], Bx_c[j][int(Nc/2):])),
bounds_error=False, fill_value=0.) for j in range(Nbs) ]
self.B_extragal_y = [ interpolate.interp1d(d_table[j],
np.concatenate((By_c[j][:int(Nc/2)], By[j], By_c[j][int(Nc/2):])),
bounds_error=False, fill_value=0.) for j in range(Nbs) ]
# tabulate oscillation probabilities
# JK - we don't do this any more as it costs extra time,
# and the sampling resolution required for extragalactic
# B-fields is so high that it is more efficient to
# just compute oscillation probabilities on the fly as
# we simulate random parameter points (see P_osc_extragal below)
# rho0 = qp.basis(2, 0) * qp.basis(2, 0).dag() # initial density matrix
# op1 = qp.basis(2, 0) * qp.basis(2, 0).dag() # operators to track diag. elements
# op2 = qp.basis(2, 1) * qp.basis(2, 1).dag() # of the density matrix
# H_dx = 0.5 * (-1j) * qp.Qobj([[ 0, 1],
# [ -1, 0]])*kpc/(hbar*c)
# H_dy = 0.5 * (-1j) * qp.Qobj([[ 0, 1j],
# [ 1j, 0]])*kpc/(hbar*c)
# dist = np.linspace(0, d/kpc, 1000)
#
# def P_surv(mu, i):
# """Compute the survival probability"""
#
# print("mu = ", mu/mu_b) # FIXME
# def B_varx(t, args):
# """Generate variable B-field in x-direction"""
# return self.B_extragal_x[i](t)
#
# def B_vary(t, args):
# """Generate variable B-field in y-direction"""
# return self.B_extragal_y[i](t)
#
# H_v = [[mu*H_dx, B_varx], [mu*H_dy, B_vary]]
# result = qp.mesolve(H_v, rho0, dist, e_ops=[op1, op2],
# options=qp.Options(nsteps=1E8))
# return result.expect[0][-1]
#
# if verbosity > 0:
# print("tabulating oscillation probabilities ...")
# Ps = np.array([[P_surv(mu, j) for mu in mu_range] for j in range(Nbs)])
# if len(mu_range) >= 4:
# self.P_app = [interpolate.interp1d(mu_range, Ps[j], 'cubic')
# for j in range(Nbs)]
# elif len(mu_range) >= 2:
# self.P_app = [interpolate.interp1d(mu_range, Ps, 'linear')
# for j in range(Nbs)]
# elif len(mu_range) == 1:
# self.P_app = [lambda x: Ps[0] for j in range(Nbs)]
# else:
# raise ValueError('invalid mu_range')
#-----------------------------------------------------------------------
def P_osc_extragal_2f(self, mu, idx=0):
"""compute the 2-flavor (one \nu_L + one N_R) neutrino oscillation
probabilities of neutrinos with magnetic moments in the
extragalctic magnetic fields
Parameters:
mu: the neutrino magnetic moment
idx: the index of the pre-computed B-field configuration
to use"""
if not hasattr(self, 'B_extragal_x'):
raise ValueError('extragalactic B field configuration not initialized.')
if idx > len(self.B_extragal_x):
raise ValueError('invalid B field configuration index: {:d}'.format(idx))
rho0 = qp.basis(2, 0) * qp.basis(2, 0).dag() # initial density matrix
op1 = qp.basis(2, 0) * qp.basis(2, 0).dag() # operators to track diagonal
op2 = qp.basis(2, 1) * qp.basis(2, 1).dag() # elements of the density matrix
H_dx = 0.5 * (+1j) * qp.Qobj([[ 0, 1],
[ -1, 0]])*kpc/(hbar*c)
H_dy = 0.5 * (-1j) * qp.Qobj([[ 0, 1j],
[ 1j, 0]])*kpc/(hbar*c)
dist = np.linspace(0, self.d[idx]/kpc, 1000)
def B_varx(t, args):
"""Generate variable B-field in x-direction"""
return self.B_extragal_x[idx](t)
def B_vary(t, args):
"""Generate variable B-field in y-direction"""
return self.B_extragal_y[idx](t)
H_v = [[mu*H_dx, B_varx], [mu*H_dy, B_vary]]
result = qp.mesolve(H_v, rho0, dist, e_ops=[op1, op2],
options=qp.Options(nsteps=1E8))
return np.array(result.expect)
#-----------------------------------------------------------------------
def P_osc_extragal_6f(self, mu, initial_comp=[2,1,0], U=None, idx=0):
"""compute the 6-flavor (3 \nu_L + 3 N_R) neutrino oscillation
probabilities of neutrinos with magnetic moments in the
extragalctic magnetic fields
Parameters:
mu: the 3x3 neutrino magnetic moment matrix
initial_comp: initial flavor composition (3x3 vector, default=[2,1,0])
U: 3x3 PMNS matrix. If None, compute on the fly
idx: the index of the pre-computed B-field configuration to use"""
if not hasattr(self, 'B_extragal_x'):
raise ValueError('extragalactic B field configuration not initialized.')
if idx > len(self.B_extragal_x):
raise ValueError('invalid B field configuration index: {:d}'.format(idx))
if U == None:
U6 = PMNS(theta12,theta13,theta23)
U = U6[:3,:3]
else:
U6 = np.block([[U,0],[0,U]])
zero_3 = np.diag([0,0,0])
# definition of states and operators
rho_f = np.diag(initial_comp) # initial 3x3 density matrix - flavor basis
rho_m = np.linalg.multi_dot([U.T, rho_f, U]) # - mass basis
rho0 = qp.Qobj(np.block([[rho_m, zero_3], [zero_3, zero_3]]))
# initial density matrix for QuTIP, assuming incoh. mix of mass states
op = [ qp.basis(6,j) * qp.basis(6,j).dag() # operators that track diagonal
for j in range(6) ] # elems of the density matrix
r = 1e20 # rescaling factor - QuTIP can't handle small entries in H
mu_m = r * np.linalg.multi_dot([U.T, mu, U]) # magn. moments in mass basis
H_0_3 = qp.Qobj( r*np.diag([0,m21,m31]) / (2.*1e14) ) # 1e14 eV = 100 TeV
H_0 = qp.Qobj(np.block([[H_0_3, zero_3],
[zero_3, H_0_3]])) * kpc/(hbar*c)
H_dx = 0.5 * (+1j) * qp.Qobj(np.block([[zero_3, mu_m],
[-mu_m, zero_3]])) * kpc/(hbar*c)
H_dy = 0.5 * (-1j) * qp.Qobj(np.block([[zero_3, mu_m*1j],
[mu_m*1j, zero_3]])) * kpc/(hbar*c)
dist = np.linspace(0, self.d[idx]/kpc, 1000)
# evolve von Neumann equation
def B_varx(t, args):
"""Generate variable B-field in x-direction"""
return self.B_extragal_x[idx](t)
def B_vary(t, args):
"""Generate variable B-field in y-direction"""
return self.B_extragal_y[idx](t)
def iid(t, args):
return 1.
H_v = [[(1/r)*H_0, iid], [(1/r)*H_dx, B_varx], [(1/r)*H_dy, B_vary]]
result = qp.mesolve(H_v, rho0, dist, e_ops=[op[j] for j in range(6)],
options=qp.Options(nsteps=1E8))
# convert results back to flavor basis
return np.dot(np.abs(U6)**2, result.expect)
#-----------------------------------------------------------------------
def propagate_sn_neutrinos(self, mu, d=None, theta_los=None, phi_los=None, mh='NH',
a_B_coh=None, Bturb=None, outer_scale=None,
a_norm=0., random_B_coh=False,
dn=True, hk=True, return_rates=False):
"""Propagate supernova neutrinos with nonzero magnetic moments
through the Galactic magnetic fields, compute event rates
at Earth, and compare to the rates expected for zero magnetic moment.
If B field parameters (a_B_coh, Bturb, and outer_scale) are given,
the magnetic field map is regenerated prior to the computation.
Parameters:
mu: neutrino magnetic moment
d: distance to the neutrino source
phi_los: orientation of the line of sight along the Galactic plane.
0 corresponds to a l.o.s. pointing away from the Galactic Center
theta_los: orientation of the line of sight relative to the Galactic plane
mh: the neutrino mass ordering ('NH' or 'IH'), relevant
for propagating neutrinos out of the SN.
a_B_coh: nuisance parameter describing the shift in the strength
of thw homogeneous (large-scale) magnetic field relative
to the fiducial model from https://arxiv.org/abs/0704.0458
Bturb: field strength of turbulent magnetic field [muG]
outer_scale: outer scale of B-field turbulence in kpc
a_norm: relative flux normalization bias to apply before
computing chi^2.
If a_bias=None or 'minimize', minimize chi^2 over
this nuisance parameter
random_B_coh: if True, pick random B fields for each of the regions
in the coherent B field model. Values are chosen from
a Gaussian of width 2 muG
dn: (bool) compute event rates at DUNE?
hk: (bool) compute event rates at HyperK?
return_rates: return event rates in addition to chi^2?
Return Value:
the chi^2 resulting from the comparison of rates
with and without magnetic moment
if return_rates=True, also a dictionary containing the event rates
at DUNE and HyperK is returned"""
U = PMNS(theta12, theta13, theta23) # PMNS matrix
binning = np.linspace(-5e-3, 2e-2, 6) # time bins [sec]
# Emission data from simulation. Col 0: time in s, col 1:luminosity in 1e51 ergs,
# col 2: average energy in MeV, col 3: alpha parameter"
nu_e = np.loadtxt('sn-data/Sf/neutrino_signal_nu_e', usecols=(0,1,2,5)).T
nubar_e = np.loadtxt('sn-data/Sf/neutrino_signal_nubar_e', usecols=(0,1,2,5)).T
nu_x = np.loadtxt('sn-data/Sf/neutrino_signal_nu_x', usecols=(0,1,2,5)).T
t = nu_e[0] # time series
idx_in = np.where(t>=-5e-3)[0][0]
idx_fn = np.where(t<=2e-2)[0][-1]
# regenerate magnetic field map
if d == None:
d = self.d
if theta_los == None:
theta_los = self.theta_los
if phi_los == None:
phi_los = self.phi_los
if (a_B_coh != None and Bturb != None and outer_scale != None) \
or d != self.d or theta_los != self.theta_los or phi_los != self.phi_los:
print("regenerating galactic B-fields.")
self.generate_B_field_gal(d=d, theta_los=theta_los, phi_los=phi_los,
a_B_coh=a_B_coh, Bturb=Bturb, outer_scale=outer_scale,
random_B_coh=random_B_coh)
self.d = d
self.theta_los = theta_los
self.phi_los = phi_los
def spec(x, mean, alph):
"""Energy spectrum of SN neutrinos in MeV"""
return (x**alph * np.exp(-(alph+1)*x/mean)
* ((1+alph)/mean)**(1+alph)/special.gamma(1+alph))
def frac(mean, alph, sigma):
"""Integrate the flux times the cross section"""
if mean == 0:
return 0
else:
return integrate.quad(lambda x: spec(x, mean, alph)
* self.sigma_extract(sigma, x),
0, 100, args=(), limit=100)[0]
# Number of emitted neutrinos (Luminosity/(Mean Energy * Total Surface))"
factor = 1e51 * erg/(4*np.pi*d**2*1e6*eV) # Conversion from erg to Mev/area
N_e = [nu_e[1][i] * factor/nu_e[2][i] if nu_e[2][i] != 0 else 0
for i in range(idx_in, idx_fn+1)]
N_ebar = [nubar_e[1][i] * factor/nubar_e[2][i] if nubar_e[2][i] != 0 else 0
for i in range(idx_in, idx_fn+1)]
N_x = [nu_x[1][i] * factor/nu_x[2][i] if nu_x[2][i] != 0 else 0
for i in range(idx_in, idx_fn+1)]
# index gymnastics for the two mass hierarchies
if mh == "NH":
"Flavor-mass state correspondence at high densities"
i_e = 3
i_mu = 1
i_tau = 2
i_be = 1
i_bmu = 2
i_btau = 3
elif mh == "IH":
i_e = 2
i_mu = 1
i_tau = 3
i_be = 3
i_bmu = 2
i_btau = 1
else:
raise ValueError(f'\'{mh}\' is not a valid value for mh; supported values are \'NH\', \'IH\'')
# event rate at DUNE
if dn:
# the structure of the following arrays is
# (flavor, detection channels, time bins)
frac_e_dn = np.array([[[frac(nu_e[2][i], nu_e[3][i], self.sigma['DN'][j][l])
for i in range(idx_in, idx_fn+1)] # time
for l in range(2)] # channel
for j in range(2)]) # flavor
frac_bare_dn = np.array([[[frac(nubar_e[2][i], nubar_e[3][i], self.sigma['bar_DN'][j][l])
for i in range(idx_in, idx_fn+1)]
for l in range(2)]
for j in range(2)])
frac_x_dn = np.array([[[frac(nu_x[2][i], nu_x[3][i], self.sigma['DN'][j][l])
for i in range(idx_in, idx_fn+1)]
for l in range(2)]
for j in range(2)])
frac_barx_dn = np.array([[[frac(nu_x[2][i], nu_x[3][i], self.sigma['bar_DN'][j][l])
for i in range(idx_in, idx_fn+1)]
for l in range(2)]
for j in range(2)])
# fold with oscillation probabilities both inside the SN and outside,
# including magnetic moments
frac_emu_dn = frac_e_dn * self.P_app(np.linalg.multi_dot(
[np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_e-1, i_e-1])
frac_baremu_dn = frac_bare_dn * self.P_app(np.linalg.multi_dot(
[np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_be-1, i_be-1])
frac_mumu_dn = frac_x_dn * self.P_app(np.linalg.multi_dot(
[np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_mu-1, i_mu-1])
frac_barmumu_dn = frac_barx_dn * self.P_app(np.linalg.multi_dot(
[np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_bmu-1, i_bmu-1])
frac_taumu_dn = frac_x_dn * self.P_app(np.linalg.multi_dot(
[np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_tau-1, i_tau-1])
frac_bartaumu_dn = frac_barx_dn * self.P_app(np.linalg.multi_dot(
[np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_btau-1, i_btau-1])
# Number of neutrinos interacting with the detector for times t
# in absence of magnetic moments.
# The structure of these arrays is (flavor, time bin)
dec_dn = [[((U[j,i_mu-1]**2+U[j,i_tau-1]**2)
* (frac_x_dn[min(j,1)][0][i] * n_ar_DN
+ frac_x_dn[min(j,1)][1][i] * n_e_DN) * N_x[i]
+ U[j,i_e-1]**2 * (frac_e_dn[min(j,1)][0][i] * n_ar_DN
+ frac_e_dn[min(j,1)][1][i] * n_e_DN) * N_e[i])
* (t[i+1+idx_in]-t[i+idx_in]) for i in range(idx_fn+1-idx_in)]
for j in range(3)]
dec_bar_dn = [[(U[j,i_be-1]**2 * (frac_bare_dn[min(j,1)][0][i] * n_ar_DN
+ frac_bare_dn[min(j,1)][1][i] * n_e_DN) * N_ebar[i]
+ (U[j,i_bmu-1]**2 + U[j,i_btau-1]**2)
* (frac_barx_dn[min(j,1)][0][i] * n_ar_DN
+ frac_barx_dn[min(j,1)][1][i] * n_e_DN) * N_x[i])
* (t[i+1+idx_in]-t[i+idx_in]) for i in range(idx_fn+1-idx_in)]
for j in range(3)]
# Now the same with magnetic conversion included
dec_mu_dn = [[((U[j,i_mu-1]**2 * (frac_mumu_dn[min(j,1)][0][i] * n_ar_DN
+ frac_mumu_dn[min(j,1)][1][i] * n_e_DN)
+ U[j,i_tau-1]**2 * (frac_taumu_dn[min(j,1)][0][i] * n_ar_DN
+ frac_taumu_dn[min(j,1)][1][i] * n_e_DN)) * N_x[i]
+ U[j,i_e-1]**2 * (frac_emu_dn[min(j,1)][0][i] * n_ar_DN
+ frac_emu_dn[min(j,1)][1][i] * n_e_DN) * N_e[i])
* (t[i+1+idx_in]-t[i+idx_in]) for i in range(idx_fn+1-idx_in)]
for j in range(3)]
dec_bar_mu_dn = [[(U[j,i_be-1]**2 * (frac_baremu_dn[min(j,1)][0][i] * n_ar_DN
+ frac_baremu_dn[min(j,1)][1][i] * n_e_DN) * N_ebar[i]
+ (U[j,i_bmu-1]**2 * (frac_barmumu_dn[min(j,1)][0][i] * n_ar_DN
+ frac_barmumu_dn[min(j,1)][1][i] * n_e_DN)
+ U[j,i_btau-1]**2 * (frac_bartaumu_dn[min(j,1)][0][i] * n_ar_DN
+ frac_bartaumu_dn[min(j,1)][1][i] * n_e_DN)) * N_x[i])
* (t[i+1+idx_in]-t[i+idx_in]) for i in range(idx_fn+1-idx_in)]
for j in range(3)]
# Bins
bins_dn = np.array([[sum(dec_dn[j][np.where(t>=binning[i])[0][0]-idx_in
:np.where(t<=binning[i+1])[0][-1]-idx_in])
for i in range(5)] # time
for j in range(3)]) # flavor
bins_bar_dn = np.array([[sum(dec_bar_dn[j][np.where(t>=binning[i])[0][0]-idx_in
:np.where(t<=binning[i+1])[0][-1]-idx_in]) for i in range(5)]
for j in range(3)])
bins_mu_dn = np.array([[sum(dec_mu_dn[j][np.where(t>=binning[i])[0][0]-idx_in
:np.where(t<=binning[i+1])[0][-1]-idx_in]) for i in range(5)]
for j in range(3)])
bins_bar_mu_dn = np.array([[sum(dec_bar_mu_dn[j][np.where(t>=binning[i])[0][0]-idx_in
:np.where(t<=binning[i+1])[0][-1]-idx_in]) for i in range(5)]
for j in range(3)])
else:
bins_dn = np.zeros((3,6))
bins_bar_dn = np.zeros((3,6))
bins_mu_dn = np.zeros((3,6))
bins_bar_mu_dn = np.zeros((3,6))
# event rates at HyperKamiokande
if hk:
frac_e_hk = np.array([[[frac(nu_e[2][i], nu_e[3][i], self.sigma['HK'][j][l]) for i in range(idx_in, idx_fn+1)] for l in range(2)] for j in range(2)])
frac_bare_hk = np.array([[[frac(nubar_e[2][i], nubar_e[3][i], self.sigma['bar_HK'][j][l]) for i in range(idx_in, idx_fn+1)] for l in range(3)] for j in range(2)])
frac_x_hk = np.array([[[frac(nu_x[2][i], nu_x[3][i], self.sigma['HK'][j][l]) for i in range(idx_in, idx_fn+1)] for l in range(2)] for j in range(2)])
frac_barx_hk = np.array([[[frac(nu_x[2][i], nu_x[3][i], self.sigma['bar_HK'][j][l]) for i in range(idx_in, idx_fn+1)]
for l in range(3)] for j in range(2)])
frac_emu_hk = frac_e_hk * self.P_app(np.linalg.multi_dot([np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_e-1, i_e-1])
frac_baremu_hk = frac_bare_hk * self.P_app(np.linalg.multi_dot([np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_be-1, i_be-1])
frac_mumu_hk = frac_x_hk * self.P_app(np.linalg.multi_dot([np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_mu-1, i_mu-1])
frac_barmumu_hk = frac_barx_hk * self.P_app(np.linalg.multi_dot([np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_bmu-1, i_bmu-1])
frac_taumu_hk = frac_x_hk * self.P_app(np.linalg.multi_dot([np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_tau-1, i_tau-1])
frac_bartaumu_hk = frac_barx_hk * self.P_app(np.linalg.multi_dot([np.transpose(U[:3,:3]), mu, U[:3,:3]])[i_btau-1, i_btau-1])
# Number of neutrinos interacting with the detector for times t
dec = [[((U[j,i_mu-1]**2+U[j,i_tau-1]**2) * (frac_x_hk[min(j,1)][0][i] * n_e_HK + frac_x_hk[min(j,1)][1][i] * n_O_HK) * N_x[i]
+ U[j,i_e-1]**2 * (frac_e_hk[min(j,1)][0][i] * n_e_HK + frac_e_hk[min(j,1)][1][i] * n_O_HK) * N_e[i])
* (t[i+1+idx_in]-t[i+idx_in]) for i in range(idx_fn+1-idx_in)] for j in range(3)]
dec_bar = [[(U[j,i_be-1]**2 * ((frac_bare_hk[min(j,1)][0][i] + frac_bare_hk[min(j,1)][2][i]) * n_e_HK
+ frac_bare_hk[min(j,1)][1][i] * n_O_HK) * N_ebar[i]
+ (U[j,i_bmu-1]**2 + U[j,i_btau-1]**2) * ((frac_barx_hk[min(j,1)][0][i] + frac_barx_hk[min(j,1)][2][i]) * n_e_HK
+ frac_barx_hk[min(j,1)][1][i] * n_O_HK) * N_x[i])
* (t[i+1+idx_in]-t[i+idx_in]) for i in range(idx_fn+1-idx_in)] for j in range(3)]
# With magnetic conversion
dec_mu = [[((U[j,i_mu-1]**2 * (frac_mumu_hk[min(j,1)][0][i] * n_e_HK + frac_mumu_hk[min(j,1)][1][i] * n_O_HK)
+ U[j,i_tau-1]**2 * (frac_taumu_hk[min(j,1)][0][i] * n_e_HK + frac_taumu_hk[min(j,1)][1][i] * n_O_HK)) * N_x[i]
+ U[j,i_e-1]**2 * (frac_emu_hk[min(j,1)][0][i] * n_e_HK + frac_emu_hk[min(j,1)][1][i] * n_O_HK) * N_e[i])
* (t[i+1+idx_in]-t[i+idx_in])
for i in range(idx_fn+1-idx_in)] for j in range(3)]
dec_bar_mu = [[(U[j,i_be-1]**2 * ((frac_baremu_hk[min(j,1)][0][i] + frac_baremu_hk[min(j,1)][2][i]) * n_e_HK
+ frac_baremu_hk[min(j,1)][1][i] * n_O_HK) * N_ebar[i]
+ (U[j,i_bmu-1]**2 * ((frac_barmumu_hk[min(j,1)][0][i] + frac_barmumu_hk[min(j,1)][2][i]) * n_e_HK
+ frac_barmumu_hk[min(j,1)][1][i] * n_O_HK)
+ U[j,i_btau-1]**2 * ((frac_bartaumu_hk[min(j,1)][0][i] + frac_bartaumu_hk[min(j,1)][2][i]) * n_e_HK
+ frac_bartaumu_hk[min(j,1)][1][i] * n_O_HK)) * N_x[i])
* (t[i+1+idx_in]-t[i+idx_in])
for i in range(idx_fn+1-idx_in)] for j in range(3)]
# Bins
bins_hk = np.array([[sum(dec[j][np.where(t>=binning[i])[0][0]-idx_in
:np.where(t<=binning[i+1])[0][-1]-idx_in])
for i in range(5)] for j in range(3)])
bins_bar_hk = np.array([[sum(dec_bar[j][np.where(t>=binning[i])[0][0]-idx_in
:np.where(t<=binning[i+1])[0][-1]-idx_in])
for i in range(5)] for j in range(3)])
bins_mu_hk = np.array([[sum(dec_mu[j][np.where(t>=binning[i])[0][0]-idx_in
:np.where(t<=binning[i+1])[0][-1]-idx_in])
for i in range(5)] for j in range(3)])
bins_bar_mu_hk = np.array([[sum(dec_bar_mu[j][np.where(t>=binning[i])[0][0]-idx_in
:np.where(t<=binning[i+1])[0][-1]-idx_in])
for i in range(5)] for j in range(3)])
else:
bins_hk = np.zeros((3,6))
bins_bar_hk = np.zeros((3,6))
bins_mu_hk = np.zeros((3,6))
bins_bar_mu_hk = np.zeros((3,6))
# chi^2 computation
def chi_temp(a):
c = a**2/0.1**2
if hk:
c += np.sum((np.sum(bins_hk + bins_bar_hk, axis=0)[:-1]
- (1+a)*np.sum(bins_mu_hk + bins_bar_mu_hk, axis=0)[:-1])**2
/ ((1+a)*np.sum(bins_mu_hk + bins_bar_mu_hk, axis=0)[:-1]))
# FIXME why is the last time bin removed?
if dn:
c += np.sum((np.sum(bins_dn + bins_bar_dn, axis=0)[:-1]
- (1+a)*np.sum(bins_mu_dn + bins_bar_mu_dn, axis=0)[:-1])**2
/ ((1+a)*np.sum(bins_mu_dn + bins_bar_mu_dn, axis=0)[:-1]))
return c
if a_norm == None or a_norm == 'minimize' or a_norm == 'min':
chi = optimize.minimize(chi_temp, 0).fun
else:
chi = chi_temp(a_norm)
bins_dn *= 1+a_norm
bins_bar_dn *= 1+a_norm
bins_mu_dn *= 1+a_norm
bins_bar_mu_dn *= 1+a_norm
bins_hk *= 1+a_norm
bins_bar_hk *= 1+a_norm
bins_mu_hk *= 1+a_norm
bins_bar_mu_hk *= 1+a_norm
if return_rates:
rates = {}
rates['DUNE','nu', 'nomu'] = bins_dn
rates['DUNE','nubar','nomu'] = bins_bar_dn
rates['DUNE','nu', 'mu'] = bins_mu_dn
rates['DUNE','nubar','mu'] = bins_bar_mu_dn