-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathexport.py
190 lines (149 loc) · 6.77 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import struct
import argparse
import json
import numpy as np
import torch
# -----------------------------------------------------------------------------
# common utilities
def serialize_fp32(file, tensor):
""" writes one fp32 tensor to file that is open in wb mode """
d = tensor.detach().cpu().view(-1).to(torch.float32).numpy()
b = struct.pack(f'{len(d)}f', *d)
file.write(b)
# -----------------------------------------------------------------------------
# model export functions
def write_weights(file, model, key):
""" writes the layer weights to file """
print(f"writing {key} {list(model[key].shape)[::-1]}")
serialize_fp32(file, model[key])
def write_layer_weights(file, model, layer, n_layers):
""" writes the layer weights to file """
print(f"writing {layer % n_layers} {list(model[layer % 0].shape)[::-1]}")
for n in range(n_layers):
serialize_fp32(file, model[layer % n])
def model_export(model, config, filepath):
"""
Export the model weights in full float32 .bin file to be read from C.
"""
version = 1
out_file = open(filepath, 'wb')
# first write the header (256 bytes)
# write magic, uint32 of "Mamb"
out_file.write(struct.pack('I', 0x4d616d62))
# write version
out_file.write(struct.pack('i', version))
# write the params (7 integers + 1 byte)
d_inner = model['layers.0.mixer.D'].shape[0]
dt_rank = model['layers.0.mixer.dt_proj.weight'].shape[1]
d_state = model['layers.0.mixer.A_log'].shape[1]
d_conv = model['layers.0.mixer.conv1d.weight'].shape[2]
shared_classifier = torch.equal(model['embedding.weight'], model['lm_head.weight'])
print(f"writing header\n layers: {config.n_layers}\n vocab_size: {config.vocab_size}\n d_model: {config.d_model}\n d_inner: {d_inner}\n dt_rank: {dt_rank}\n d_state: {d_state}\n d_conv: {d_conv}\n shared classifier: {shared_classifier}")
header = struct.pack('iiiiiiii', config.n_layers, config.vocab_size, config.d_model,
d_inner, dt_rank, d_state, d_conv, int(shared_classifier))
out_file.write(header)
# pad the rest with zeros
pad = 256 - out_file.tell()
assert pad >= 0
out_file.write(b'\0' * pad)
'''
Example of the model structure:
embedding.weight - [50280, 768]
layers.0.mixer.D - [1536]
layers.0.mixer.in_proj.weight - [3072, 768]
layers.0.mixer.conv1d.weight - [1536, 1, 4]
layers.0.mixer.conv1d.bias - [1536]
layers.0.mixer.x_proj.weight - [80, 1536]
layers.0.mixer.dt_proj.weight - [1536, 48]
layers.0.mixer.dt_proj.bias - [1536]
layers.0.mixer.A_log - [1536, 16]
layers.0.mixer.out_proj.weight - [768, 1536]
layers.0.norm.weight - [768]
norm_f.weight - [768]
lm_head.weight - [50280, 768]
'''
# convert the A_log to A
for n in range(config.n_layers):
model[f'layers.{n}.mixer.A'] = -torch.exp(model.pop(f'layers.{n}.mixer.A_log'))
# write the weights
# write the embedding weights
write_weights(out_file, model, 'embedding.weight')
# layer weights
write_layer_weights(out_file, model, 'layers.%d.mixer.in_proj.weight', config.n_layers)
write_layer_weights(out_file, model, 'layers.%d.mixer.conv1d.weight', config.n_layers)
write_layer_weights(out_file, model, 'layers.%d.mixer.conv1d.bias', config.n_layers)
write_layer_weights(out_file, model, 'layers.%d.mixer.x_proj.weight', config.n_layers)
write_layer_weights(out_file, model, 'layers.%d.mixer.dt_proj.weight', config.n_layers)
write_layer_weights(out_file, model, 'layers.%d.mixer.dt_proj.bias', config.n_layers)
write_layer_weights(out_file, model, 'layers.%d.mixer.A', config.n_layers)
write_layer_weights(out_file, model, 'layers.%d.mixer.D', config.n_layers)
write_layer_weights(out_file, model, 'layers.%d.mixer.out_proj.weight', config.n_layers)
write_layer_weights(out_file, model, 'layers.%d.norm.weight', config.n_layers)
# final norm weights
write_weights(out_file, model, 'norm_f.weight')
# final classifier weights
if not shared_classifier:
write_weights(out_file, model, 'lm_head.weight')
# write to binary file
out_file.close()
print(f"done. saved to {filepath}")
# -----------------------------------------------------------------------------
# Load / import functions
def load_model(path):
print(f"loading model from {path}")
# load the model
if os.path.isdir(path):
filepath = os.path.join(path, 'pytorch_model.bin')
else:
filepath = path
model = torch.load(filepath, map_location='cpu')
# remove the 'backbone.' prefix from the keys
unwanted_prefix = 'backbone.'
for k,v in list(model.items()):
if k.startswith(unwanted_prefix):
model[k[len(unwanted_prefix):]] = model.pop(k)
# get the path to the config file
if os.path.isdir(path):
config_path = os.path.join(path, 'config.json')
else:
config_path = os.path.join(os.path.dirname(path), 'config.json')
# load the config
with open(config_path) as f:
config = json.load(f)
# rename config.n_layers to config.n_layers
config['n_layers'] = config.pop('n_layer')
config = argparse.Namespace(**config)
return model, config
def get_model_from_huggingface(model_name: str):
"""Download model from HuggingFace and get the path to the model file.
The model name can be one of the following:
'state-spaces/mamba-130m'
'state-spaces/mamba-370m'
'state-spaces/mamba-790m'
'state-spaces/mamba-1.4b'
'state-spaces/mamba-2.8b'
'state-spaces/mamba-2.8b-slimpj'
"""
from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
from transformers.utils.hub import cached_file
config_path = cached_file(model_name, CONFIG_NAME, _raise_exceptions_for_missing_entries=False)
model_path = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
return model_path
# -----------------------------------------------------------------------------
# CLI entrypoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("source", type=str, help="model name or folder where the model files are located", default="state-spaces/mamba-130m")
parser.add_argument("destination", type=str, help="full path to the output file", default="model.bin")
args = parser.parse_args()
# if the source starts with 'state-spaces/mamba-' then load the model from HuggingFace
if args.source.startswith('state-spaces/mamba-'):
model_path = get_model_from_huggingface(args.source)
else:
model_path = args.source
model, config = load_model(model_path)
if model is None:
parser.error("Can't load input model!")
# export
model_export(model, config, args.destination)