-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSkipNet.py
460 lines (394 loc) · 18.9 KB
/
SkipNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# Pix2Pix : https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.autograd import Variable
from torch.optim import lr_scheduler
import numpy as np
###############################################################################
# Functions
###############################################################################
# Defines the GAN loss which uses either LSGAN or the regular GAN.
# When LSGAN is used, it is basically same as MSELoss,
# but it abstracts away the need to create the target label tensor
# that has the same size as the input
class GANLoss(nn.Module):
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0,
tensor=torch.FloatTensor):
super(GANLoss, self).__init__()
self.real_label = target_real_label
self.fake_label = target_fake_label
self.real_label_var = None
self.fake_label_var = None
self.Tensor = tensor
if use_lsgan:
self.loss = nn.MSELoss()
else:
self.loss = nn.BCELoss()
def get_target_tensor(self, input, target_is_real):
target_tensor = None
if target_is_real:
create_label = ((self.real_label_var is None) or
(self.real_label_var.numel() != input.numel()))
if create_label:
real_tensor = self.Tensor(input.size()).fill_(self.real_label)
self.real_label_var = Variable(real_tensor, requires_grad=False)
target_tensor = self.real_label_var
else:
create_label = ((self.fake_label_var is None) or
(self.fake_label_var.numel() != input.numel()))
if create_label:
fake_tensor = self.Tensor(input.size()).fill_(self.fake_label)
self.fake_label_var = Variable(fake_tensor, requires_grad=False)
target_tensor = self.fake_label_var
return target_tensor
def __call__(self, input, target_is_real):
target_tensor = self.get_target_tensor(input, target_is_real)
return self.loss(input, target_tensor)
def weights_init_normal(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.uniform(m.weight.data, 0.0, 0.02)
elif classname.find('Linear') != -1:
init.uniform(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
def weights_init_xavier(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.xavier_normal(m.weight.data, gain=1)
elif classname.find('Linear') != -1:
init.xavier_normal(m.weight.data, gain=1)
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 0.02, 1)
init.constant(m.bias.data, 0.0)
def weights_init_kaiming(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
def weights_init_orthogonal(m):
classname = m.__class__.__name__
print(classname)
if classname.find('Conv') != -1:
init.orthogonal(m.weight.data, gain=1)
elif classname.find('Linear') != -1:
init.orthogonal(m.weight.data, gain=1)
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
def init_weights(net, init_type='normal'):
print('initialization method [%s]' % init_type)
if init_type == 'normal':
net.apply(weights_init_normal)
elif init_type == 'xavier':
net.apply(weights_init_xavier)
elif init_type == 'kaiming':
net.apply(weights_init_kaiming)
elif init_type == 'orthogonal':
net.apply(weights_init_orthogonal)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
def get_norm_layer(norm_type='instance'):
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
elif layer_type == 'none':
norm_layer = None
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
def get_scheduler(optimizer, opt):
if opt.lr_policy == 'lambda':
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch - opt.niter) / float(opt.niter_decay+1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def define_G(input_nc, output_nc, ngf, which_model_netG, norm='batch', use_dropout=False, init_type='normal', gpu_ids=[]):
netG = None
use_gpu = len(gpu_ids) > 0
norm_layer = get_norm_layer(norm_type=norm)
if use_gpu:
assert(torch.cuda.is_available())
if which_model_netG == 'resnet_9blocks':
netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9, gpu_ids=gpu_ids)
elif which_model_netG == 'resnet_6blocks':
netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6, gpu_ids=gpu_ids)
elif which_model_netG == 'unet_128':
netG = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout, gpu_ids=gpu_ids)
elif which_model_netG == 'unet_256':
netG = UnetGeneratorBetterUpsampler(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout, gpu_ids=gpu_ids)
else:
raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG)
if len(gpu_ids) > 0:
netG.cuda()
init_weights(netG, init_type=init_type)
return netG
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print(net)
print('Total number of parameters: %d' % num_params)
# Defines the SkipNetWork
class Pix2PixModel(nn.Module):
def __init__(self, output_nc, input_nc=3):
super(Pix2PixModel, self).__init__()
self.netG = define_G(input_nc, output_nc, 64, 'unet_256', 'batch', False, 'xavier', [0])
def forward(self, *cycles):
# First one
xc = self.netG(cycles[0], *cycles[1:])
return xc
def define_D(input_nc, ndf, which_model_netD,
n_layers_D=3, norm='batch', use_sigmoid=False, init_type='normal', gpu_ids=[]):
netD = None
use_gpu = len(gpu_ids) > 0
norm_layer = get_norm_layer(norm_type=norm)
if use_gpu:
assert(torch.cuda.is_available())
if which_model_netD == 'basic':
netD = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
elif which_model_netD == 'n_layers':
netD = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
elif which_model_netD == 'pixel':
netD = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
else:
raise NotImplementedError('Discriminator model name [%s] is not recognized' %
which_model_netD)
init_weights(netD, init_type=init_type)
return netD
# Defines the Unet generator.
# |num_downs|: number of downsamplings in UNet. For example,
# if |num_downs| == 7, image of size 128x128 will become of size 1x1
# at the bottleneck
class UnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
norm_layer=nn.BatchNorm2d, use_dropout=False, gpu_ids=[], modify_unet=False, unit=-1, increase=0):
super(UnetGenerator, self).__init__()
self.gpu_ids = gpu_ids
# construct unet structure
unet_block = UnetSkipConnectionBlockOutput(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True, modify_unet=modify_unet, unit=unit, increase=increase)
for i in range(num_downs - 5):
unet_block = UnetSkipConnectionBlockOutput(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
unet_block = UnetSkipConnectionBlockOutput(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlockOutput(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlockOutput(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlockOutput(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer)
self.model = unet_block
def forward(self, x, *views):
# if self.gpu_ids and isinstance(x.data, torch.cuda.FloatTensor):
# output, output_orig = nn.parallel.data_parallel(self.model, (x, views), self.gpu_ids)
# return output, output_orig
# else:
return self.model(x, *views)
# Defines the Unet generator.
# |num_downs|: number of downsamplings in UNet. For example,
# if |num_downs| == 7, image of size 128x128 will become of size 1x1
# at the bottleneck
class UnetGeneratorBetterUpsampler(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
norm_layer=nn.BatchNorm2d, use_dropout=False, gpu_ids=[]):
super(UnetGeneratorBetterUpsampler, self).__init__()
self.gpu_ids = gpu_ids
# construct unet structure
unet_block = UnetSkipConnectionBlockBetterUpsampler(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True)
for i in range(num_downs - 5):
unet_block = UnetSkipConnectionBlockBetterUpsampler(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
unet_block = UnetSkipConnectionBlockBetterUpsampler(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlockBetterUpsampler(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlockBetterUpsampler(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlockBetterUpsampler(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer)
self.model = unet_block
def forward(self, x, *views):
# if self.gpu_ids and isinstance(x.data, torch.cuda.FloatTensor):
# output, output_orig = nn.parallel.data_parallel(self.model, (x, views), self.gpu_ids)
# return output, output_orig
# else:
return self.model(x, *views)
# Defines the submodule with skip connection.
# X -------------------identity---------------------- X
# |-- downsampling -- |submodule| -- upsampling --|
class UnetSkipConnectionBlockBetterUpsampler(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(UnetSkipConnectionBlockBetterUpsampler, self).__init__()
self.outermost = outermost
self.innermost = innermost
self.use_dropout = use_dropout
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upsample = nn.Upsample(scale_factor=2, mode='bilinear',align_corners=True)
upconv = nn.Conv2d(inner_nc * 2, outer_nc,
kernel_size=3, stride=1,
padding=1, bias=use_bias)
down = [downconv]
up = [uprelu, upsample, upconv]
self.up = nn.Sequential(*up)
self.down = nn.Sequential(*down)
elif innermost:
upsample = nn.Upsample(scale_factor=2, mode='bilinear',align_corners=True)
upconv = nn.Conv2d(inner_nc, outer_nc,
kernel_size=3, stride=1,
padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upsample, upconv, upnorm]
self.up = nn.Sequential(*up)
self.down = nn.Sequential(*down)
else:
upsample = nn.Upsample(scale_factor=2, mode='bilinear',align_corners=True)
upconv = nn.Conv2d(inner_nc * 2, outer_nc,
kernel_size=3, stride=1,
padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upsample, upconv, upnorm]
self.up = nn.Sequential(*up)
self.down = nn.Sequential(*down)
self.dropout = nn.Dropout(0.5)
self.submodule =submodule
def forward(self, x_orig):
# Assuming that the first set of units are viewpoint; the rest are 3D
# Then we can concat (max / sum / whatever these parts)
# And the rest is only the viewpoint
x_fv = self.down(x_orig)
if self.innermost:
x = self.up(x_fv)
return torch.cat([x, x_orig], 1), x_fv
if self.outermost:
x, x_fv = self.submodule(x_fv)
x = self.up(x)
return x, x_fv
else:
x, x_fv = self.submodule(x_fv)
if self.use_dropout:
x = self.dropout(self.up(x))
else:
x = self.up(x)
return torch.cat([x, x_orig], 1), x_fv
# Defines the submodule with skip connection.
# X -------------------identity---------------------- X
# |-- downsampling -- |submodule| -- upsampling --|
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
self.innermost = innermost
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.innermost:
xc_orig = self.model[2](self.model[1](self.model[0](x)))
x_new = self.model[3](xc_orig)
x_new = self.model[4](x_new)
self.model.fc = xc_orig
return torch.cat([x, x_new], 1)
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, gpu_ids=[]):
super(NLayerDiscriminator, self).__init__()
self.gpu_ids = gpu_ids
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
kw = 4
padw = 1
sequence = [
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers):
nf_mult_prev = nf_mult
nf_mult = min(2**n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=2, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2**n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=1, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
if use_sigmoid:
sequence += [nn.Sigmoid()]
self.model = nn.Sequential(*sequence)
def forward(self, input):
if len(self.gpu_ids) and isinstance(input.data, torch.cuda.FloatTensor):
return nn.parallel.data_parallel(self.model, input, self.gpu_ids)
else:
return self.model(input)