forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_link_and_code.py
executable file
·300 lines (228 loc) · 9.12 KB
/
bench_link_and_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import print_function
import os
import sys
import time
import numpy as np
import faiss
import argparse
import datasets
from datasets import sanitize
import neighbor_codec
######################################################
# Command-line parsing
######################################################
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
group.add_argument(*args, **kwargs)
group = parser.add_argument_group('dataset options')
aa('--db', default='deep1M', help='dataset')
aa( '--compute_gt', default=False, action='store_true',
help='compute and store the groundtruth')
group = parser.add_argument_group('index consturction')
aa('--indexkey', default='HNSW32', help='index_factory type')
aa('--efConstruction', default=200, type=int,
help='HNSW construction factor')
aa('--M0', default=-1, type=int, help='size of base level')
aa('--maxtrain', default=256 * 256, type=int,
help='maximum number of training points')
aa('--indexfile', default='', help='file to read or write index from')
aa('--add_bs', default=-1, type=int,
help='add elements index by batches of this size')
aa('--link_singletons', default=False, action='store_true',
help='do a pass to link in the singletons')
group = parser.add_argument_group(
'searching (reconstruct_from_neighbors options)')
aa('--beta_centroids', default='',
help='file with codebook')
aa('--neigh_recons_codes', default='',
help='file with codes for reconstruction')
aa('--beta_ntrain', default=250000, type=int, help='')
aa('--beta_k', default=256, type=int, help='beta codebook size')
aa('--beta_nsq', default=1, type=int, help='number of beta sub-vectors')
aa('--beta_niter', default=10, type=int, help='')
aa('--k_reorder', default='-1', help='')
group = parser.add_argument_group('searching')
aa('--k', default=100, type=int, help='nb of nearest neighbors')
aa('--exhaustive', default=False, action='store_true',
help='report the exhaustive search topline')
aa('--searchthreads', default=-1, type=int,
help='nb of threads to use at search time')
aa('--efSearch', default='', type=str,
help='comma-separated values of efSearch to try')
args = parser.parse_args()
print("args:", args)
######################################################
# Load dataset
######################################################
xt, xb, xq, gt = datasets.load_data(
dataset=args.db, compute_gt=args.compute_gt)
nq, d = xq.shape
nb, d = xb.shape
######################################################
# Make index
######################################################
if os.path.exists(args.indexfile):
print("reading", args.indexfile)
index = faiss.read_index(args.indexfile)
if isinstance(index, faiss.IndexPreTransform):
index_hnsw = faiss.downcast_index(index.index)
vec_transform = index.chain.at(0).apply_py
else:
index_hnsw = index
vec_transform = lambda x:x
hnsw = index_hnsw.hnsw
hnsw_stats = faiss.cvar.hnsw_stats
else:
print("build index, key=", args.indexkey)
index = faiss.index_factory(d, args.indexkey)
if isinstance(index, faiss.IndexPreTransform):
index_hnsw = faiss.downcast_index(index.index)
vec_transform = index.chain.at(0).apply_py
else:
index_hnsw = index
vec_transform = lambda x:x
hnsw = index_hnsw.hnsw
hnsw.efConstruction = args.efConstruction
hnsw_stats = faiss.cvar.hnsw_stats
index.verbose = True
index_hnsw.verbose = True
index_hnsw.storage.verbose = True
if args.M0 != -1:
print("set level 0 nb of neighbors to", args.M0)
hnsw.set_nb_neighbors(0, args.M0)
xt2 = sanitize(xt[:args.maxtrain])
assert np.all(np.isfinite(xt2))
print("train, size", xt.shape)
t0 = time.time()
index.train(xt2)
print(" train in %.3f s" % (time.time() - t0))
print("adding")
t0 = time.time()
if args.add_bs == -1:
index.add(sanitize(xb))
else:
for i0 in range(0, nb, args.add_bs):
i1 = min(nb, i0 + args.add_bs)
print(" adding %d:%d / %d" % (i0, i1, nb))
index.add(sanitize(xb[i0:i1]))
print(" add in %.3f s" % (time.time() - t0))
print("storing", args.indexfile)
faiss.write_index(index, args.indexfile)
######################################################
# Train beta centroids and encode dataset
######################################################
if args.beta_centroids:
print("reordering links")
index_hnsw.reorder_links()
if os.path.exists(args.beta_centroids):
print("load", args.beta_centroids)
beta_centroids = np.load(args.beta_centroids)
nsq, k, M1 = beta_centroids.shape
assert M1 == hnsw.nb_neighbors(0) + 1
rfn = faiss.ReconstructFromNeighbors(index_hnsw, k, nsq)
else:
print("train beta centroids")
rfn = faiss.ReconstructFromNeighbors(
index_hnsw, args.beta_k, args.beta_nsq)
xb_full = vec_transform(sanitize(xb[:args.beta_ntrain]))
beta_centroids = neighbor_codec.train_beta_codebook(
rfn, xb_full, niter=args.beta_niter)
print(" storing", args.beta_centroids)
np.save(args.beta_centroids, beta_centroids)
faiss.copy_array_to_vector(beta_centroids.ravel(),
rfn.codebook)
index_hnsw.reconstruct_from_neighbors = rfn
if rfn.k == 1:
pass # no codes to take care of
elif os.path.exists(args.neigh_recons_codes):
print("loading neigh codes", args.neigh_recons_codes)
codes = np.load(args.neigh_recons_codes)
assert codes.size == rfn.code_size * index.ntotal
faiss.copy_array_to_vector(codes.astype('uint8'),
rfn.codes)
rfn.ntotal = index.ntotal
else:
print("encoding neigh codes")
t0 = time.time()
bs = 1000000 if args.add_bs == -1 else args.add_bs
for i0 in range(0, nb, bs):
i1 = min(i0 + bs, nb)
print(" encode %d:%d / %d [%.3f s]\r" % (
i0, i1, nb, time.time() - t0), end=' ')
sys.stdout.flush()
xbatch = vec_transform(sanitize(xb[i0:i1]))
rfn.add_codes(i1 - i0, faiss.swig_ptr(xbatch))
print()
print("storing %s" % args.neigh_recons_codes)
codes = faiss.vector_to_array(rfn.codes)
np.save(args.neigh_recons_codes, codes)
######################################################
# Exhaustive evaluation
######################################################
if args.exhaustive:
print("exhaustive evaluation")
xq_tr = vec_transform(sanitize(xq))
index2 = faiss.IndexFlatL2(index_hnsw.d)
accu_recons_error = 0.0
if faiss.get_num_gpus() > 0:
print("do eval on GPU")
co = faiss.GpuMultipleClonerOptions()
co.shard = False
index2 = faiss.index_cpu_to_all_gpus(index2, co)
# process in batches in case the dataset does not fit in RAM
rh = datasets.ResultHeap(xq_tr.shape[0], 100)
t0 = time.time()
bs = 500000
for i0 in range(0, nb, bs):
i1 = min(nb, i0 + bs)
print(' handling batch %d:%d' % (i0, i1))
xb_recons = np.empty(
(i1 - i0, index_hnsw.d), dtype='float32')
rfn.reconstruct_n(i0, i1 - i0, faiss.swig_ptr(xb_recons))
accu_recons_error += (
(vec_transform(sanitize(xb[i0:i1])) -
xb_recons)**2).sum()
index2.reset()
index2.add(xb_recons)
D, I = index2.search(xq_tr, 100)
rh.add_batch_result(D, I, i0)
rh.finalize()
del index2
t1 = time.time()
print("done in %.3f s" % (t1 - t0))
print("total reconstruction error: ", accu_recons_error)
print("eval retrieval:")
datasets.evaluate_DI(rh.D, rh.I, gt)
def get_neighbors(hnsw, i, level):
" list the neighbors for node i at level "
assert i < hnsw.levels.size()
assert level < hnsw.levels.at(i)
be = np.empty(2, 'uint64')
hnsw.neighbor_range(i, level, faiss.swig_ptr(be), faiss.swig_ptr(be[1:]))
return [hnsw.neighbors.at(j) for j in range(be[0], be[1])]
#############################################################
# Index is ready
#############################################################
xq = sanitize(xq)
if args.searchthreads != -1:
print("Setting nb of threads to", args.searchthreads)
faiss.omp_set_num_threads(args.searchthreads)
if gt is None:
print("no valid groundtruth -- exit")
sys.exit()
k_reorders = [int(x) for x in args.k_reorder.split(',')]
efSearchs = [int(x) for x in args.efSearch.split(',')]
for k_reorder in k_reorders:
if index_hnsw.reconstruct_from_neighbors:
print("setting k_reorder=%d" % k_reorder)
index_hnsw.reconstruct_from_neighbors.k_reorder = k_reorder
for efSearch in efSearchs:
print("efSearch=%-4d" % efSearch, end=' ')
hnsw.efSearch = efSearch
hnsw_stats.reset()
datasets.evaluate(xq, gt, index, k=args.k, endl=False)
print("ndis %d nreorder %d" % (hnsw_stats.ndis, hnsw_stats.nreorder))