This repository has been archived by the owner on Jun 12, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcounterm.py
476 lines (451 loc) · 17.5 KB
/
counterm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# Simulation of countermeasures for the Monero selection protocol
import sys, sqlite3, matplotlib, collections, bisect, itertools, os
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
__author__ = "Kevin Lee and Andrew Miller"
__maintainer__ = "Kevin Lee"
__email__ = "[email protected]"
# define some global variables
CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW = 60
CRYPTONOTE_DEFAULT_TX_SPENDABLE_AGE = 10
top06mo = 1500203268
top12mo = 1515755268
rct_start = 1484051946
if 'top_time' not in globals():
top_time = None
top_idx = {}
time_diff = []
time_dict = collections.OrderedDict()
time_dict_keys = []
def extrap(x, xp, yp):
'''The function adds linear extrapolation to the np.interp function. It is called
in extrapolation simulations in which we want to measure top block heights in the future.
'''
y = np.interp(x, xp, yp)
y = np.where(x<xp[0], yp[0]+(x-xp[0])*(yp[0]-yp[1])/(xp[0]-xp[1]), y)
y = np.where(x>xp[-1], yp[-1]+(x-xp[-1])*(yp[-1]-yp[-2])/(xp[-1]-xp[-2]), y)
return y
def preprocess(time):
'''Sets up the variables in the simulation. The most recent timestamp in the database is
set to be the time of our simulation, the maximum global index is found. We keep track of that in
our simulation. Afterwards, we read in the recent and top zones for 6 and 12 month simulations to use.
Lastly, we read the time differences between transaction time and output creation (receive) time for the
transactions that were spent in-the-clear, because those will define our simulation behavior for choosing
the real spend.
'''
global top_time, top_idx, time_diff, time_dict, time_dict_keys
print 'Running preprocess first'
if time=='2017':
conn_1 = sqlite3.connect('outs_2017_03_18.db')
else:
conn_1 = sqlite3.connect('outs_2018_03_29.db')
c_1 = conn_1.cursor()
c_1.execute('''SELECT MAX(block_height) FROM out_table''')
top_block, = c_1.fetchone()
cmd = '''SELECT timestamp FROM out_table WHERE block_height = {ht}'''
cmd = cmd.format(ht = top_block)
c_1.execute(cmd)
timenow, = c_1.fetchone()
top_time = timenow
if time == "2017":
cmd = '''SELECT MAX(g_idx) as idx from out_table WHERE amount = {denom}'''
cmd = cmd.format(denom = 0)
else:
cmd = '''SELECT MAX(g_idx) as idx from out_table'''
c_1.execute(cmd)
top = c_1.fetchone()
top_idx[0] = {}
top_idx[0][0] = top[0]
if time == "2017":
cmd = '''SELECT timestamp, MAX(g_idx) FROM out_table WHERE amount={denom} GROUP BY timestamp'''
cmd = cmd.format(denom = 0)
else:
cmd = '''SELECT timestamp, MAX(g_idx) FROM out_table GROUP BY timestamp'''
c_1.execute(cmd)
result = c_1.fetchall()
x = np.asarray([int(row[0]) for row in result])
y = np.asarray([int(row[1]) for row in result])
for row in result:
time_dict[row[0]] = row[1]
if time == '2017':
if os.path.isfile("extrap_time_dict.npz"):
npzfile = np.load("extrap_time_dict.npz")
ts = npzfile["ts"]
g = npzfile["g"]
else:
ts, g = ([] for i in range(2))
for f in range(top_time+1, top12mo+1):
ts.append(f)
done = int(extrap(f,x,y))
g.append(done)
ts = np.asarray(ts)
g = np.asarray(g)
outfile = "extrap_time_dict"
np.savez(outfile, ts = ts, g = g)
for a,b in itertools.izip(ts,g):
time_dict[a] = b
top_idx[0][6] = time_dict[top06mo]
top_idx[0][12] = time_dict[top12mo]
time_dict_keys = time_dict.keys()
conn = sqlite3.connect('zinput.db')
c_2 = conn.cursor()
cmd = '''SELECT tx_timestamp - mixin_timestamp as time_diff from first'''
c_2.execute(cmd)
diff = c_2.fetchall()
for row in diff:
if row[0] >= 0:
time_diff.append(row[0])
time_diff = np.asarray(time_diff)
def fetch_real_output(top_tm, top_idx):
'''Randomly selects an output to be used as the real spend. A time difference is
selected from our list of zero-input transactions we collected from the blockchain. Next,
using the time difference, we find the closest global index if the block is in the
dictionary. We normalize the index returned by dividing the
real index by the top index (mixin offset). For instance, if the top index is Y
and the chosen index is X, we return X/Y.
'''
while True:
rhd = np.random.choice(time_diff)
rb = top_tm - rhd
if rb >= rct_start:
break
closest = bisect.bisect_left(time_dict_keys, rb)
real_g_idx = time_dict[time_dict_keys[closest]]
return float(real_g_idx)/top_idx
def fetch_mixin(top_tm, time_back, top_idx):
'''Selects mixins based on time back. We find the closest global index if the block is in the
dictionary, otherwise find closest. We normalize the index returned by dividing the
real index by the top index (mixin offset). For instance, if the top index is Y
and the chosen index is X, we return X/Y.
'''
rb = top_tm - time_back
if rb < rct_start:
return None
closest = bisect.bisect_left(time_dict_keys, rb)
avail_idx = time_dict[time_dict_keys[closest]]
return float(avail_idx)/top_idx
def sample_mixins(amount, num_mix, period, is_rct=True):
'''Our proposed mixin-sampling protocol samples mixins from a gamma distribution
over the mixin set. We do not sample more mixins that necessary. We normalize the
mixin returned by dividing the real index by the top index. For instance, if
the top index is Y and the chosen index is X, we return X/Y.
'''
mixin_vector = []
top_sim_time = -1
if period == 0:
top_sim_time = top_time
elif period == 6:
top_sim_time = top06mo
elif period == 12:
top_sim_time = top12mo
assert top_sim_time >= 0
top_global_idx = top_idx[amount][period]
real = fetch_real_output(top_sim_time, top_global_idx)
num_found = 0
while (num_found < num_mix):
time_back = np.exp(np.random.gamma(shape=19.28, scale=1/1.61))+120
candidate = fetch_mixin(top_sim_time, time_back, top_global_idx)
if candidate is None:
continue
if candidate not in mixin_vector and candidate != real:
mixin_vector.append(candidate)
num_found += 1
return real, mixin_vector
def sim(N, M, time, year, is_rct=True):
'''The main simulation function starts the simulations. The simulation is run N times
with M mixins chosen. We normalize the mixin returned by dividing the
real index by the top index. For instance, if the top index is Y and the chosen index is X,
we return X/Y. We will put all the percentages returned inside a vector and save it
externally so we can run various graphing schemes on one simulation batch in the future.
The simulation is run with sim(# of trials, # of mixins), 0 to sample all, 6 for six months, 12 for 12 months.
'''
if year == "2017":
assert time in [0,6,12]
else:
assert time == 0
preprocess(year)
real, rest = ([] for i in range(2))
for x in range(0,N):
print(x+1)
m = 0
n, q = sample_mixins(m, M, time, is_rct)
real.append(n)
rest.append(q)
real = np.asarray(real)
rest = np.asarray(rest)
outfile = "counterm_outfile_%d_mo_%d_mixins_%s" % (time, M, year)
np.savez(outfile, real=real, rest=rest)
def graph_figure(M, time, version='counterm', is_rct=False):
'''Takes in results of the simulation runs and generates a graph of all simulation runs.
The recents, rest, and real mixins graphed separately on the same graph. These graphs can be
compared to the 0-mixin behavior graphs, and should be similar to Monero graphs.
'''
outfile = "counterm_outfile_%d_mo_%d_mixins_%s.npz" % (time, M, version)
npzfile = np.load(outfile)
real = npzfile['real']
rest = npzfile['rest']
rest = list(itertools.chain.from_iterable(rest))
plt.ioff()
plt.clf()
plt.hist((1.0-np.array(rest), 1.0-np.array(real)), bins=np.logspace(-3,0, 200), normed=True, histtype='stepfilled', stacked=True, label=['Rest', 'Real'])
plt.ylim(ymin=0, ymax=100)
plt.xscale('log')
plt.xlabel('Mixin Offset (% of available)')
plt.ylabel('PDF')
plt.legend()
timestr = {0: 'Block XXX (TODO)',
6: '6 months',
12: '12 months'}[time]
rct_str = '(RingCT) ' if is_rct else ''
plt.title('%s Simulation at %s (%d Mixins, %d Trials)' % (rct_str, timestr, M, len(real)))
plt.savefig('resultsim_%d_%d_%s_%s.png' % (M, time, version, rct_str))
def graph_guesser(filename):
'''Does the guess-most-recent algorithm on our simulation data, and adds to a running score for each mixin.
It also does a guess-least-recent on our simulation, and adds that to a running score of each mixin.
At the conclusion, the worst score vs mixin total is graphed to give our countermeasure credibility.
'''
plt.ioff()
plt.clf()
for period in [0,6,12]:
xs = []
ys = []
for M in range(1,16):
outfile = "counterm_outfile_%d_mo_%d_mixins_%s.npz" % (period, M, 'counterm')
npzfile = np.load(outfile)
real = npzfile['real']
rest = npzfile['rest']
print real.shape, rest.shape
correct_fg = 0
total_fg = 0
for r1, r2 in zip(real, rest):
total_fg += 1
if r1 <= np.min(r2):
correct_fg += 1
correct_lg = 0
total_lg = 0
for r1, r2 in zip(real, rest):
total_lg += 1
if r1 >= np.max(r2):
correct_lg += 1
assert total_lg == total_fg
if correct_lg >= correct_fg:
correct = correct_lg
total = total_lg
else:
correct = correct_fg
total = total_fg
xs.append(M)
ys.append(float(correct)/total)
print(float(correct)/total)
if period == 0:
label = "Proposed Protocol Now"
else:
label = "Proposed Protocol, %d Months" % (period)
if period == 0:
line = 'b+-'
elif period == 6:
line = 'b^--'
else:
line = 'bs-'
plt.plot(xs, ys, line, label=label)
for period in [0,6,12]:
xs = []
ys = []
for M in range(1,16):
outfile = "current_outfile_%d_mo_%d_mixins_%s.npz" % (period, M, '0.10')
npzfile = np.load(outfile)
real = npzfile['real']
recents = npzfile['recents']
rest = npzfile['rest']
print real.shape, recents.shape, rest.shape
correct = 0
total = 0
for r1, r2, r3 in zip(real, recents, rest):
total += 1
if r1 >= np.max(np.concatenate((r2,r3))):
correct += 1
xs.append(M)
ys.append(float(correct)/total)
print(float(correct)/total)
if period == 0:
label = "Current Protocol Now"
else:
label = "Current Protocol, %d Months" % (period)
if period == 0:
line = 'r+-'
elif period == 6:
line = 'r^--'
else:
line = 'rs-'
plt.plot(xs, ys, line, label=label)
xs = range(1,16)
ys = [1/float(_+1) for _ in xs]
plt.plot(xs, ys, 'k-', label="Ideal")
plt.xlabel('Number of Mixins')
plt.ylabel('Fraction Correct')
axes = plt.gca()
axes.set_ylim([0,1])
plt.legend(loc='best')
plt.savefig('first_guess_counterm_v_before_rct_final.png')
def graph_anonset(filename):
'''Does the guess-most-recent algorithm on our simulation data, and adds to a running score for each mixin.
It also does a guess-least-recent on our simulation, and adds that to a running score of each mixin.
At the conclusion, the 1/(worst score) vs mixin total is graphed to give our countermeasure credibility in
terms of anonymity-set.
'''
plt.ioff()
plt.clf()
for period in [0,12]:
xs, ys = ([] for i in range(2))
for M in range(1,16):
outfile = "counterm_outfile_%d_mo_%d_mixins_%s.npz" % (period, M, '2017')
npzfile = np.load(outfile)
real = npzfile['real']
rest = npzfile['rest']
print real.shape, rest.shape
correct_fg = total_fg = 0
for r1, r2 in zip(real, rest):
total_fg += 1
if r1 <= np.min(r2):
correct_fg += 1
correct_lg = total_lg = 0
for r1, r2 in zip(real, rest):
total_lg += 1
if r1 >= np.max(r2):
correct_lg += 1
assert total_lg == total_fg
if correct_lg >= correct_fg:
correct, total = correct_lg, total_lg
else:
correct, total = correct_fg, total_fg
xs.append(M)
ys.append(1/(float(correct)/total))
print(float(correct)/total)
if period == 0:
label = "Ppd. Prot, Mar '17"
linestyle='+-'
color='blue'
else:
linestyle='+--'
if period ==6:
color='teal'
label = "Ppd. Prot, Jul '17*"
else:
color='navy'
label = "Ppd. Prot, Jan '18*"
plt.plot(xs, ys, linestyle, color=color,label=label)
xs, ys = ([] for i in range(2))
for M in range(1,16):
outfile = "counterm_outfile_0_mo_%d_mixins_%s.npz" % (M, '2018')
npzfile = np.load(outfile)
real = npzfile['real']
rest = npzfile['rest']
print real.shape, rest.shape
correct_fg = total_fg = 0
for r1, r2 in zip(real, rest):
total_fg += 1
if r1 <= np.min(r2):
correct_fg += 1
correct_lg = total_lg = 0
for r1, r2 in zip(real, rest):
total_lg += 1
if r1 >= np.max(r2):
correct_lg += 1
assert total_lg == total_fg
if correct_lg >= correct_fg:
correct, total = correct_lg, total_lg
else:
correct, total = correct_fg, total_fg
xs.append(M)
ys.append(1/(float(correct)/total))
print(float(correct)/total)
label = "Ppd. Prot, Mar '18"
linestyle='+-'
color='magenta'
plt.plot(xs, ys, linestyle, color=color, label=label)
for period in [0,12]:
xs, ys = ([] for i in range(2))
for M in range(1,16):
outfile = "outfile_%d_mo_%d_mixins_%s.npz" % (period, M, '0.10')
npzfile = np.load(outfile)
real = npzfile['real']
recents = npzfile['recents']
rest = npzfile['rest']
print real.shape, recents.shape, rest.shape
correct = total = 0
for r1, r2, r3 in zip(real, recents, rest):
total += 1
if r1 >= np.max(np.concatenate((r2,r3))):
correct += 1
xs.append(M)
ys.append(1/(float(correct)/total))
print(float(correct)/total)
if period == 0:
label = "v0.10.1, Mar '17"
linestyle='+-'
color='red'
else:
linestyle='+--'
if period == 6:
color='tomato'
label = "v0.10.1, Jul '17*"
else:
color='salmon'
label = "v0.10.1, Jan '18*"
plt.plot(xs, ys, linestyle, color=color, label=label)
xs, ys = ([] for i in range(2))
for M in range(1,16):
outfile = "outfile_%d_mixins_%s.npz" % (M, '0.10')
npzfile = np.load(outfile)
real = npzfile['real']
recents = npzfile['recents']
rest = npzfile['rest']
print real.shape, recents.shape, rest.shape
correct = total = 0
for r1, r2, r3 in zip(real, recents, rest):
total += 1
if r1 >= np.max(np.concatenate((r2,r3))):
correct += 1
xs.append(M)
ys.append(1/(float(correct)/total))
print(float(correct)/total)
label = "v0.10.1, Mar '18"
linestyle='+-'
color='brown'
plt.plot(xs, ys, linestyle, color=color, label=label)
xs, ys = ([] for i in range(2))
for M in range(1,16):
outfile = "outfile_%d_mixins_%s.npz" % (M, '0.11')
npzfile = np.load(outfile)
real = npzfile['real']
recents = npzfile['recents']
rest = npzfile['rest']
print real.shape, recents.shape, rest.shape
correct = total = 0
for r1, r2, r3 in zip(real, recents, rest):
total += 1
if r1 >= np.max(np.concatenate((r2,r3))):
correct += 1
xs.append(M)
ys.append(1/(float(correct)/total))
plt.plot(xs, ys, '+-', color="green",label="v.0.11.0, Mar '18")
xs = range(1,16)
ys = [float(_+1) for _ in xs]
plt.plot(xs, ys, '+-', label="Ideal", color="black")
# figtext(.02, .02, "* projected from data on March 18, 2017")
plt.xlabel('Number of Mixins')
plt.ylabel('Effective-untraceability Set')
plt.legend(loc='best', prop={'size':'medium'})
plt.title('Effective-untraceability Set vs. Mixins, 100000 Trials')
plt.savefig(filename)
def main():
M = int(sys.argv[1])
period = int(sys.argv[2])
year = sys.argv[3]
print 'Processing:', M, period, year
sim(100000, M, period, year, True)
try: __IPYTHON__
except NameError:
if __name__ == '__main__':
main()