-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_preprocessing.py
34 lines (27 loc) · 2.17 KB
/
data_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import pandas as pd
import numpy as np
import joblib
encoder_Application_mode = joblib.load("model/encoder_Application_mode.joblib")
encoder_Debtor = joblib.load("model/encoder_Debtor.joblib")
encoder_Gender = joblib.load("model/encoder_Gender.joblib")
encoder_Scholarship_holder = joblib.load("model/encoder_Scholarship_holder.joblib")
encoder_Tuition_fees_up_to_date = joblib.load("model/encoder_Tuition_fees_up_to_date.joblib")
scaler_Age_at_enrollment = joblib.load("model/scaler_Age_at_enrollment.joblib")
scaler_Curricular_units_1st_sem_approved = joblib.load("model/scaler_Curricular_units_1st_sem_approved.joblib")
scaler_Curricular_units_1st_sem_grade = joblib.load("model/scaler_Curricular_units_1st_sem_grade.joblib")
scaler_Curricular_units_2nd_sem_approved = joblib.load("model/scaler_Curricular_units_2nd_sem_approved.joblib")
scaler_Curricular_units_2nd_sem_grade = joblib.load("model/scaler_Curricular_units_2nd_sem_grade.joblib")
def data_preprocessing(data):
data=data.copy()
df=pd.DataFrame()
df['Application_mode'] = encoder_Application_mode.transform(data['Application_mode'])
df['Debtor'] = encoder_Debtor.transform(data['Debtor'])
df['Tuition_fees_up_to_date'] = encoder_Tuition_fees_up_to_date.transform(data['Tuition_fees_up_to_date'])
df['Gender'] = encoder_Gender.transform(data['Gender'])
df['Scholarship_holder'] = encoder_Scholarship_holder.transform(data['Scholarship_holder'])
df['Age_at_enrollment'] = scaler_Age_at_enrollment.transform(np.asarray(data['Age_at_enrollment']).reshape(-1,1))
df['Curricular_units_1st_sem_approved'] = scaler_Curricular_units_1st_sem_approved.transform(np.asarray(data['Curricular_units_1st_sem_approved']).reshape(-1,1))
df['Curricular_units_1st_sem_grade'] = scaler_Curricular_units_1st_sem_grade.transform(np.asarray(data['Curricular_units_1st_sem_grade']).reshape(-1,1))
df['Curricular_units_2nd_sem_approved'] = scaler_Curricular_units_2nd_sem_approved.transform(np.asarray(data['Curricular_units_2nd_sem_approved']).reshape(-1,1))
df['Curricular_units_2nd_sem_grade'] = scaler_Curricular_units_2nd_sem_grade.transform(np.asarray(data['Curricular_units_2nd_sem_grade']).reshape(-1,1))
return df