-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_roberta_large.py
47 lines (39 loc) · 1.23 KB
/
training_roberta_large.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import datasets_utils
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
)
from training import train_model
if __name__ == '__main__':
# load base model
hf_repo = "FacebookAI/roberta-large"
tokenizer = AutoTokenizer.from_pretrained(hf_repo)
model = AutoModelForSequenceClassification.from_pretrained(hf_repo, num_labels=3)
assert tokenizer.model_max_length < 10_000
tokenizer_kwargs = dict(
truncation='only_first',
padding="longest",
max_length=tokenizer.model_max_length,
)
info_hyperparameters = {
'hf_repo': hf_repo,
'precision':'mixed'
}
# input_datasets = datasets_utils.get_mnli()
# input_datasets = datasets_utils.get_mnli_anli_snli_combined()
input_datasets = datasets_utils.get_all_datasets()
train_model(
tokenizer,
model,
'runs',
tokenizer_kwargs,
input_datasets,
train_name='train',
validation_names=None, # figured out by the training function.
train_effective_batch_size=256,
train_batch_size=16,
learning_rate=9e-5,
num_warmup_steps=None,
num_epochs=15,
info_hyperparameters=info_hyperparameters,
)