-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHSI_dataset.py
215 lines (180 loc) · 7.99 KB
/
HSI_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import cv2
import h5py
import numpy as np
import scipy.io as sio
import torch
import torch.nn.functional as F
from PIL import Image
from einops import rearrange
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm import tqdm
from models.SpectralEdgeOperator import GenEdge
from models.SpectralSaliencyGenerator import GenSaliencyFeats
def img_size():
return 224
class Compose(object):
def __init__(self, input_transforms):
self.transforms = input_transforms
def __call__(self, edge, spec_sal, gt, edge_gt):
for t in self.transforms:
edge, spec_sal, gt, edge_gt = t(
edge, spec_sal, gt, edge_gt
)
return edge, spec_sal, gt, edge_gt
class RandomHorizontallyFlip(object):
def __call__(self, edge, spec, gt, edge_gt):
if np.random.random() < 0.5:
return (
edge[:, :, torch.arange(spec.shape[2] - 1, -1, -1)],
spec[:, :, torch.arange(spec.shape[2] - 1, -1, -1)],
gt.transpose(Image.FLIP_LEFT_RIGHT),
edge_gt.transpose(Image.FLIP_LEFT_RIGHT)
)
return edge, spec, gt, edge_gt
class RandomCrop(object):
def __call__(self, edge, spec, gt, edge_gt):
gt = np.array(gt)
edge_gt = np.array(edge_gt)
H, W = gt.shape
randw = np.random.randint(W / 8)
randh = np.random.randint(H / 8)
offseth = 0 if randh == 0 else np.random.randint(randh)
offsetw = 0 if randw == 0 else np.random.randint(randw)
p0, p1, p2, p3 = offseth, H + offseth - randh, offsetw, W + offsetw - randw
edge = edge[:, p0:p1, p2:p3]
spec = spec[:, p0:p1, p2:p3]
gt = Image.fromarray(gt[p0:p1, p2:p3].astype("uint8"))
edge_gt = Image.fromarray(edge_gt[p0:p1, p2:p3].astype("uint8"))
return edge, spec, gt, edge_gt
class Config(object):
def __init__(self, **kwargs):
self.kwargs = kwargs
def __getattr__(self, name):
if name in self.kwargs:
return self.kwargs[name]
else:
return None
class Data(Dataset):
def __init__(self, cfg):
self.cfg = cfg
GSF = GenSaliencyFeats()
GE5 = GenEdge(5)
GE15 = GenEdge(15)
GE25 = GenEdge(25)
# train
self.joint_transform_train = Compose(
[
RandomHorizontallyFlip(),
RandomCrop(),
]
)
self.mask_transform_train = transforms.ToTensor()
# test
self.gt_transform_test = transforms.ToTensor() # ->(C,H,W),(0~1)
self.spec_transform_test = transforms.Compose(
[transforms.Resize((img_size(), img_size())), transforms.ToTensor()]
)
with open(cfg.datapath + "/" + cfg.mode + ".txt", "r") as lines:
self.samples = [line.strip() for line in lines]
# Initialize lists for storing processed data
self.gts, self.edge_gts, self.edges, self.specs = [], [], [], []
print("Loading data...")
for name in tqdm(self.samples):
name = name.split(".")[0]
os.makedirs(self.cfg.datapath + '/input_maps', exist_ok=True)
mat_name = self.cfg.datapath + '/input_maps/' + name + ".mat"
if not os.path.exists(mat_name):
mat = h5py.File(self.cfg.datapath + "/hyperspectral/" + cfg.mode + "/" + name + ".mat",
"r")
hypercube = np.float32(np.array(mat["hypercube"])) # (C,H,W)
hypercube = torch.from_numpy(hypercube / np.max(hypercube)).cuda() # (C,H,W)
# ------------ Shape transform, optional, feel free to comment out or modify ------------
hypercube = hypercube[:, :, torch.arange(hypercube.shape[2] - 1, -1, -1)]
if "HSOD-BIT" in cfg.datapath:
hypercube = rearrange(hypercube.unsqueeze(0), 'b c h w -> b h w c') # [1,H,W,C]
else:
hypercube = rearrange(hypercube.unsqueeze(0), 'b c h w -> b w h c') # [1,H,W,C]
hypercube = hypercube[:, torch.arange(hypercube.shape[1] - 1, -1, -1), :]
# --------------------------------------------------------------------------------------
# generate and save edge map
edge_5, edge_15, edge_25 = GE5(hypercube), GE15(hypercube), GE25(hypercube)
edge = torch.concat((edge_5, edge_15, edge_25), dim=0).cpu() # [3, H, W]
edge_save = edge.numpy()
# generate and save spec_sal map
spec = GSF(hypercube).squeeze(0).cpu() # [C, H, W]
spec = spec / torch.max(spec)
spec_save = spec.numpy() # [C, H, W]
sio.savemat(self.cfg.datapath + '/input_maps/' + name + '.mat', {'spec': spec_save, 'edge': edge_save})
else:
mat = sio.loadmat(mat_name)
edge = np.float32(np.array(mat["edge"]))
edge = torch.from_numpy(edge / np.max(edge)) # [C, H, W]
spec = np.float32(np.array(mat["spec"]))
spec = torch.from_numpy(spec / np.max(spec)) # [C, H, W]
self.specs.append(spec)
self.edges.append(edge)
if self.cfg.mode == "train":
gt = Image.open(
self.cfg.datapath + "/GT/train/" + name + ".jpg"
).convert("L")
edge_gt = Image.open(
self.cfg.datapath + "/edge_GT/" + name + ".jpg"
).convert("L")
self.gts.append(gt)
self.edge_gts.append(edge_gt)
else:
gt = Image.open(
self.cfg.datapath + "/GT/test/" + name + ".jpg"
).convert("L")
shape = gt.size[::-1]
self.shape = shape
self.gts.append(gt)
print(f"{len(self.samples)} data loaded!")
def __getitem__(self, idx):
name = self.samples[idx]
if self.cfg.mode == "train":
edge, spec, gt, edge_gt = self.joint_transform_train(
self.edges[idx],
self.specs[idx],
self.gts[idx],
self.edge_gts[idx],
)
gt = self.mask_transform_train(gt)
edge_gt = self.mask_transform_train(edge_gt)
return edge, spec, gt, edge_gt, name
else:
edge = F.interpolate(
self.edges[idx].unsqueeze(0), (img_size(), img_size()), mode="bilinear", align_corners=False
).squeeze(0)
spec = F.interpolate(
self.specs[idx].unsqueeze(0), (img_size(), img_size()), mode="bilinear", align_corners=False
).squeeze(0)
gt = self.gt_transform_test(self.gts[idx])
return edge, gt, spec, self.shape, name
def __len__(self):
return len(self.samples)
def collate(self, batch):
size = img_size()
edge, spec, gt, edge_gt, name = [
list(item) for item in zip(*batch)
]
for i in range(len(batch)):
gt[i] = np.array(gt[i]).transpose((1, 2, 0))
gt[i] = cv2.resize(
gt[i], dsize=(size, size), interpolation=cv2.INTER_LINEAR
)
edge[i] = F.interpolate(edge[i].unsqueeze(0), size=(size, size), mode="bilinear",
align_corners=False).squeeze(0)
spec[i] = F.interpolate(spec[i].unsqueeze(0), size=(size, size), mode="bilinear",
align_corners=False).squeeze(0)
edge_gt[i] = np.array(edge_gt[i]).transpose((1, 2, 0))
edge_gt[i] = cv2.resize(
edge_gt[i], dsize=(size, size), interpolation=cv2.INTER_LINEAR
)
edge = torch.stack(edge)
spec = torch.stack(spec)
gt = torch.from_numpy(np.stack(gt, axis=0)).unsqueeze(dim=1)
edge_gt = torch.from_numpy(np.stack(edge_gt, axis=0)).unsqueeze(dim=1)
return edge, spec, gt, edge_gt, name