-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcpu.v
134 lines (104 loc) · 4.38 KB
/
cpu.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
module cpu2
#(parameter BITS = 32)
(clk);
input clk;
reg [BITS-1:0] pc; // Program Counter / imem Address
reg [BITS-1:0] pc_if; // PC on IF
reg [BITS-1:0] pc_id; // PC on ID - for AUIPC
reg [BITS-1:0] pc_ex; // PC on EX - for BRANCH
reg [BITS-1:0] pc_mem; // PC on EX - for BRANCH
reg [BITS-1:0] pc_wb; // PC on EX - for BRANCH
wire [31:0] instr;
reg [31:0] p_if; // Pipeline - after IF register - stage 2 result
reg [31:0] p_id; // Pipeline - after ID register - stage 2 result
reg [31:0] p_ex; // Pipeline - after EX register - stage 3 result
reg [31:0] p_mem; // Pipeline - after MEM register - stage 4 result
reg [31:0] p_wb;
wire [31:0] hz_in;
reg [BITS-1:0] res_wb; // carry ALU res to write on wb stage
reg [BITS-1:0] rs2_dmem0; // carry contents of rs2 to store on dmem;
reg [BITS-1:0] rs2_dmem1; // carry contents of rs2 to store on dmem;
wire br; // branch enable;
reg clr; // clear pipeline regs;
wire hz;
//wire hz_if; // halt because of hazard
//wire hz_id; // halt because of hazard
//wire hz_ex; // halt because of hazard
//wire hz_mem; // halt because of hazard
//wire hz_wb; // halt because of hazard
wire [BITS-1:0] a_rf;
wire [BITS-1:0] b_rf;
wire [BITS-1:0] imm;
wire imm_en;
wire [BITS-1:0] a;
wire [BITS-1:0] b;
wire [BITS-1:0] res;
wire [BITS-1:0] adw_dmem;
wire [BITS-1:0] rs_dmem;
wire rf_we;
wire [BITS-1:0] rf_wb;
mem #(.BITS(BITS)) imem(clk, pc, 1'b0, 3'b010, instr);
defparam imem.file = "instr.mem";
hazard haz(clk, instr, br, hz, hz_in);
regfile #(.BITS(BITS)) rf(
.clk(clk),
.ad1(hz_in[19:15]), // rs1 field
.ad2(hz_in[24:20]), // rs2 field
.adw(p_mem[11:7]), // rd field
.we(rf_we), // control logic
.rs1(a_rf), // rs1 data
.rs2(b_rf), // rs2 data
.rsw(rf_wb) // write-back from Data mem or ALU res
);
immgen #(.BITS(BITS)) ig(clk, hz_in, imm_en, imm);
assign a = (p_id[6:0] == 7'b0010111) || // AUIPC
(p_id[6:0] == 7'b1101111) || // JAL
(p_id[6:0] == 7'b1100111) || // JALR
(p_id[6:0] == 7'b1100011) ? pc_ex : a_rf; // BRANCH
assign b = imm_en ? imm : b_rf;
branch #(.BITS(BITS)) brn(clk, p_id, a_rf, b_rf, br);
alu #(.BITS(BITS)) alu(clk, p_id, a, b, res);
mem #(.BITS(BITS)) dmem(clk, res, dmem_we, p_ex[14:12], rs_dmem);
defparam dmem.file = "data.mem";
assign dmem_we = p_ex[6:0] == 7'b0100011;
assign rs_dmem = (dmem_we) ? rs2_dmem0 : 32'bz;
assign rf_we = (p_mem[6:0] == 7'b0000011) || // LOAD
(p_mem[6:0] == 7'b0010011) || // ALU IMM
(p_mem[6:0] == 7'b0110011) || // ALU R-R
(p_mem[6:0] == 7'b0110111) || // LUI
(p_mem[6:0] == 7'b0010111) || // AUIPC
(p_mem[6:0] == 7'b1101111) || // JAL
(p_mem[6:0] == 7'b1100111) ? 1 : 0; // JALR
assign rf_wb = (p_mem[6:0] == 7'b0000011) ? rs_dmem : // DATA FROM DMEM
(p_mem[6:0] == 7'b0110111) ? {p_mem[31:12], 12'b0} : // IMM
(p_mem[6:0] == 7'b1101111) ? pc_mem : //JAL
(p_mem[6:0] == 7'b1100111) ? pc_mem : res_wb; // JALR
initial begin
pc = 'b0;
pc_id = 'b0;
pc_ex = 'b0;
pc_mem = 'b0;
pc_wb = 'b0;
p_if = 'b0;
p_id = 'b0;
p_ex = 'b0;
p_mem = 'b0;
p_wb = 'b0;
end
always @(posedge clk) begin
pc_if <= (hz) ? pc_if : pc;
pc_id <= (hz) ? pc_id : pc_if;
pc_ex <= (hz) ? pc_ex : pc_id;
pc_mem <= (hz) ? pc_mem : pc_ex;
pc_wb <= (hz) ? pc_wb : pc_mem;
p_id <= (br) ? 32'b0 : hz_in;
p_ex <= (br) ? 32'b0 : p_id;
p_mem <= (clr) ? 32'b0 : p_ex;
p_wb <= (clr) ? 32'b0 : p_mem;
res_wb <= res;
rs2_dmem0 <= b_rf;
// Branch
clr <= (br) ? 1 : 0;
pc <= (br) ? res : (hz) ? pc : pc + 4;
end
endmodule