This repository has been archived by the owner on Mar 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_u2gnn_unsup.py
245 lines (201 loc) · 11.2 KB
/
train_u2gnn_unsup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python
from time import time
import json
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from tqdm import tqdm
import pandas as pd
import math
import numpy as np
from scipy.sparse import coo_matrix
from sklearn.linear_model import LogisticRegression
import statistics
import torch
import torch.nn as nn
import torch.nn.functional as F
from u2gnn.model_unsup import *
from util import *
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if __name__ == "__main__":
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--model_name", default="KAGGLE", help="Output directory name")
parser.add_argument("--learning_rate", default=0.0001, type=float, help="Learning rate")
parser.add_argument("--batch_size", default=16, type=int, help="Batch size")
parser.add_argument("--num_epochs", default=50, type=int, help="Number of training epochs")
parser.add_argument("--num_sampled", default=256, type=int, help="Sampled softmax length to embedding")
parser.add_argument("--hidden_size", default=128, type=int, help="The hidden size for the feedforward layer")
parser.add_argument("--num_hidden_layers", default=1, type=int, help="Number of hidden layers in the encoder")
parser.add_argument("--num_timesteps", default=1, type=int, help="Timestep T ~ Number of self-attention layers within each U2GNN layer")
parser.add_argument("--num_neighbors", default=16, type=int, help="Number of neighbors for the input of the encoder")
parser.add_argument("--dropout", default=0.5, type=float, help="Dropout rate")
parser.add_argument("--load_epoch", default=0, type=int, help="Load previous state if set")
parser.add_argument("--test_only", action='store_true', help="Print test result and exit")
args = parser.parse_args()
print(args)
print("Loading data...")
graphs: "list[S2VGraph]"
label_map: "dict[int, int]"
graph_pos: "dict[int, int]"
graphs, label_map, graph_pos = load_cached_data()
print("Loading data finished.")
graph_labels = np.array([graph.label for graph in graphs])
graph_features = np.array([graph.graph_features for graph in graphs])
feature_dim_size = graphs[0].node_features.shape[1] + graphs[0].node_centrality.shape[1]
num_classes = len(label_map)
print(f"node features dimension: {feature_dim_size}")
def get_graphpool(batch_graph):
start_idx = [0]
# compute the padded neighbor list
for i, graph in enumerate(batch_graph):
start_idx.append(start_idx[i] + len(graph.g))
idx = []
elem = []
for i, graph in enumerate(batch_graph):
elem.extend([1] * len(graph.g))
idx.extend([[i, j] for j in range(start_idx[i], start_idx[i + 1], 1)])
elem = torch.FloatTensor(elem)
idx = torch.LongTensor(idx).transpose(0, 1)
graph_pool = torch.sparse.FloatTensor(idx, elem, torch.Size([len(batch_graph), start_idx[-1]]))
return graph_pool
graph_pool = get_graphpool(graphs)
graph_indices = graph_pool._indices()[0]
vocab_size = graph_pool.size()[1]
def get_batch_data(selected_idx):
batch_graph = [graphs[idx] for idx in selected_idx]
c_concat = np.concatenate([graph.node_centrality for graph in batch_graph], 0)
X_concat = np.concatenate([graph.node_features for graph in batch_graph], 0)
X_concat = np.concatenate((X_concat, c_concat), axis=1)
X_concat = torch.from_numpy(X_concat).to(device, dtype=torch.float32)
edge_mat_list = []
start_idx = [0]
for i, graph in enumerate(batch_graph):
start_idx.append(start_idx[i] + len(graph.g))
edge_mat_list.append(graph.edge_mat + start_idx[i])
Adj_block_idx = np.concatenate(edge_mat_list, 1)
# Adj_block_elem = np.ones(Adj_block_idx.shape[1])
Adj_block_idx_row = Adj_block_idx[0, :]
Adj_block_idx_cl = Adj_block_idx[1, :]
dict_Adj_block = {}
for i in range(len(Adj_block_idx_row)):
if Adj_block_idx_row[i] not in dict_Adj_block:
dict_Adj_block[Adj_block_idx_row[i]] = []
dict_Adj_block[Adj_block_idx_row[i]].append(Adj_block_idx_cl[i])
input_neighbors = []
for input_node in range(X_concat.shape[0]):
if input_node in dict_Adj_block:
input_neighbors.append([input_node] + list(np.random.choice(dict_Adj_block[input_node], args.num_neighbors, replace=True)))
else:
input_neighbors.append([input_node for _ in range(args.num_neighbors + 1)])
input_x = np.array(input_neighbors)
input_x = torch.from_numpy(input_x).to(device, dtype=torch.long)
input_y = [torch.where(graph_indices == i)[0] for i in selected_idx]
input_y = torch.cat(input_y).to(device)
return X_concat, input_x, input_y
def get_graph_embeddings(node_embeddings: nn.Parameter):
graph_embeddings = torch.spmm(graph_pool, node_embeddings.cpu()).data.numpy()
graph_embeddings = np.concatenate((graph_embeddings, graph_features), 1)
return graph_embeddings
model = UnsupU2GNN(feature_dim_size=feature_dim_size, ff_hidden_size=args.hidden_size,
dropout=args.dropout, num_self_att_layers=args.num_timesteps,
vocab_size=vocab_size, sampled_num=args.num_sampled,
num_U2GNN_layers=args.num_hidden_layers, device=device).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
num_batches_per_epoch = int((len(graphs) - 1) / args.batch_size) + 1
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=num_batches_per_epoch, gamma=0.1)
train_all_idx, _ = train_idx(graphs, labeled_only=False)
train_intr_idx, _ = train_idx(graphs, labeled_only=True)
test_intr_idx, test_real_idx = test_idx(graph_pos)
def train():
model.train() # Turn on the train mode
total_loss = 0.
for selected_idx in tqdm(batch(shuffle(train_all_idx), batch_size=args.batch_size), desc="train"):
X_concat, input_x, input_y = get_batch_data(selected_idx)
optimizer.zero_grad()
logits = model(X_concat, input_x, input_y)
loss = torch.sum(logits)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
total_loss += loss.item()
return total_loss
def evaluate():
model.eval() # Turn on the evaluation mode
with torch.no_grad(): # evaluating
graph_embeddings = get_graph_embeddings(model.ss.weight)
accuracy = []
for train_idx, test_idx in kfold_train_idx(graphs, n_splits=10, labeled_only=True):
train_embed = graph_embeddings[train_idx]
test_embed = graph_embeddings[test_idx]
train_labels = graph_labels[train_idx].astype(int)
test_labels = graph_labels[test_idx].astype(int)
cls = LogisticRegression(solver="liblinear", tol=0.001, multi_class="auto")
cls.fit(train_embed, train_labels)
acc = cls.score(test_embed, test_labels)
accuracy.append(acc)
print(f"Evaluate: {' '.join([f'{acc*100:5.2f}' for acc in accuracy])}")
return statistics.mean(accuracy), statistics.stdev(accuracy)
def test():
model.eval()
with torch.no_grad():
graph_embeddings = get_graph_embeddings(model.ss.weight)
train_embed = graph_embeddings[train_intr_idx]
train_labels = graph_labels[train_intr_idx].astype(int)
cls = LogisticRegression(solver="liblinear", tol=0.001, multi_class="auto")
cls.fit(train_embed, train_labels)
test_embed = graph_embeddings[test_intr_idx]
test_labels_est = cls.predict(test_embed)
test_labels_est = [(label_map[l] if l in label_map else l) for l in test_labels_est]
test_acc = test_accuracy(test_real_idx, test_labels_est)
return test_acc, test_labels_est
"""main process"""
out_dir: Path = project_root/"runs/U2GNNunsup"/args.model_name
out_dir.mkdir(exist_ok=True, parents=True)
print(f"Using {out_dir}")
global_args_key = ["num_sampled", "hidden_size", "num_hidden_layers", "num_timesteps", "dropout"]
epoch_args_key = ["learning_rate", "batch_size", "num_neighbors"]
checkpoints_key = ["time", "train_acc", "train_acc_stdev", "train_loss", "test_acc"]
def filter_args(arg: dict, filter: list):
return {k: v for k, v in arg.items() if k in filter}
if (out_dir/"args.json").is_file():
with open(out_dir/"args.json", "r") as f:
cargs = filter_args(vars(args), global_args_key)
sargs = filter_args(json.load(f), global_args_key)
if cargs != sargs:
print('args mismatch!')
print('current args:', cargs)
print('saved args:', sargs)
raise ValueError(f"runs/U2GNNunsup/{args.model_name}/args.json is not same with current args, delete it to dismiss.")
else:
with open(out_dir/"args.json", "w") as f:
json.dump(filter_args(vars(args), global_args_key), f, indent=4)
checkpoints = pd.DataFrame(columns=[*epoch_args_key, *checkpoints_key])
checkpoints.index.name = "epoch"
if args.load_epoch > 0:
epoch_dir = out_dir/f"{args.load_epoch}"
model.load_state_dict(torch.load(epoch_dir/"model.pth"))
checkpoints = pd.concat([checkpoints, pd.read_csv(epoch_dir/"checkpoints.csv", index_col="epoch")])
test_acc, label_est = test()
print(f"state loaded from epoch {args.load_epoch} - test_acc: {test_acc*100:.2f}%")
if args.test_only:
pd.DataFrame(data={"Id": test_real_idx, "Category": label_est}).to_csv(epoch_dir/"test_sample.csv", index=False)
elif args.test_only:
raise RuntimeError("args.test_only must be set with args.load_epoch")
if not args.test_only:
train_losses = []
for epoch in range(args.load_epoch + 1, args.num_epochs + 1):
start_time = time()
train_loss = train()
train_acc, train_acc_stdev = evaluate()
time_spend = time() - start_time
train_losses.append(train_loss)
if len(train_losses) > 5 and train_losses[-1] > np.mean(train_losses[-6:-1]):
scheduler.step()
test_acc, label_est = test()
print(f"| epoch {epoch:3d} | time: {time_spend:7.2f}s | train_acc: {train_acc*100:5.2f}% [stdev={train_acc_stdev*100:5.2f}] " +
f"| train_loss: {train_loss:11.6f} | test_acc: {test_acc*100:5.2f}%")
checkpoints.loc[epoch] = {**{k: v for k, v in zip(checkpoints_key, [time_spend, train_acc, train_acc_stdev, train_loss, test_acc])},
**filter_args(vars(args), epoch_args_key)}
epoch_dir = out_dir/f"{epoch}"
epoch_dir.mkdir(exist_ok=True)
torch.save(model.state_dict(), epoch_dir/"model.pth")
checkpoints.to_csv(epoch_dir/"checkpoints.csv")
pd.DataFrame(data={"Id": test_real_idx, "Category": label_est}).to_csv(epoch_dir/"test_sample.csv", index=False)