-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis_level3_omz.py
executable file
·704 lines (558 loc) · 25.6 KB
/
analysis_level3_omz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
#!/usr/bin/ipython
#
# Copyright 2015, Plymouth Marine Laboratory
#
# This file is part of the bgc-val library.
#
# bgc-val is free software: you can redistribute it and/or modify it
# under the terms of the Revised Berkeley Software Distribution (BSD) 3-clause license.
# bgc-val is distributed in the hope that it will be useful, but
# without any warranty; without even the implied warranty of merchantability
# or fitness for a particular purpose. See the revised BSD license for more details.
# You should have received a copy of the revised BSD license along with bgc-val.
# If not, see <http://opensource.org/licenses/BSD-3-Clause>.
#
# Address:
# Plymouth Marine Laboratory
# Prospect Place, The Hoe
# Plymouth, PL1 3DH, UK
#
# Email:
#
"""
.. module:: analysis_level3_omz
:platform: Unix
:synopsis: A script to produce a level 3 analysis for Oxygen Minimum Zones.
.. moduleauthor:: Lee de Mora <[email protected]>
"""
#####
# Load Standard Python modules:
from sys import argv,exit
from os.path import exists
from calendar import month_name
from socket import gethostname
from netCDF4 import Dataset
from glob import glob
from scipy.interpolate import interp1d
import numpy as np
import os,sys
from getpass import getuser
#####
# Load specific local code:
import UKESMpython as ukp
from timeseries import timeseriesAnalysis
from timeseries import profileAnalysis
from timeseries import timeseriesPlots as tsp
from timeseries import extentMaps
#####
# User defined set of paths pointing towards the datasets.
import paths
def analysis_omz(jobID=''):
annual = True
analysisKeys = []
analysisKeys.append('O2') # WOA Oxygen
analysisKeys.append('OMZMeanDepth') # OMZ mean depth
analysisKeys.append('OMZThickness') # Oxygen Minimum Zone Thickness
analysisKeys.append('TotalOMZVolume') # Total OMZ volume
analysisKeys.append('OMZExtent') # Oxygen Minimum Zone Thickness
analysisKeys.append('ZonalCurrent') # Zonal Veloctity
analysisKeys.append('MeridionalCurrent') # Meridional Veloctity
analysisKeys.append('VerticalCurrent') # Vertical Veloctity
analysisDict = {}
imagedir = ukp.folder(paths.imagedir +'/'+jobID+'/Level3/OMZ')
shelvedir = ukp.folder(paths.shelvedir+'/'+jobID+'/Level3/OMZ')
if annual: WOAFolder = paths.WOAFolder_annual
else: WOAFolder = paths.WOAFolder
#####
# make a link to the time series
for a in analysisKeys:
level1shelveFold = os.path.abspath(paths.shelvedir+'/timeseries/'+jobID)
files = glob(level1shelveFold+'/*'+a+'*')
for f in files:
lnfile = os.path.abspath(shelvedir)+os.path.basename(f)
if os.path.exists(lnfile):continue
print "linking ",f,lnfile
#assert 0
os.symlink(f,lnfile)
regionList = ['Global', 'ignoreInlandSeas',
'SouthernOcean','ArcticOcean',
'Equator10', 'Remainder',
'NorthernSubpolarAtlantic','NorthernSubpolarPacific',
]
layerList = ['Surface','500m','1000m',]
metricList = ['mean','median', '10pc','20pc','30pc','40pc','50pc','60pc','70pc','80pc','90pc','min','max']
dataD = {}
modeldataD = {}
def listModelDataFiles(jobID, filekey, datafolder, annual):
if annual:
return sorted(glob(datafolder+jobID+"/"+jobID+"o_1y_*_"+filekey+".nc"))
else:
return sorted(glob(datafolder+jobID+"/"+jobID+"o_1m_*_"+filekey+".nc"))
#####
# Adding land mask for model
masknc = Dataset(paths.orcaGridfn,'r')
tlandmask = masknc.variables['tmask'][:]
masknc.close()
def applyLandMask(nc,keys):
#### works like no change, but applies a mask.
return np.ma.masked_where(tlandmask==0,nc.variables[keys[0]][:].squeeze())
#####
#
medusaCoords = {'t':'time_counter', 'z':'deptht', 'lat': 'nav_lat', 'lon': 'nav_lon', 'cal': '360_day',} # model doesn't need time dict.
medusaUCoords = {'t':'time_counter', 'z':'depthu', 'lat': 'nav_lat', 'lon': 'nav_lon', 'cal': '360_day',} # model doesn't need time dict.
medusaVCoords = {'t':'time_counter', 'z':'depthv', 'lat': 'nav_lat', 'lon': 'nav_lon', 'cal': '360_day',} # model doesn't need time dict.
medusaWCoords = {'t':'time_counter', 'z':'depthw', 'lat': 'nav_lat', 'lon': 'nav_lon', 'cal': '360_day',} # model doesn't need time dict.
woaCoords = {'t':'index_t', 'z':'depth', 'lat': 'lat', 'lon': 'lon', 'cal': 'standard','tdict':ukp.tdicts['ZeroToZero']}
godasCoords = {'t':'index_t', 'z':'level', 'lat': 'lat', 'lon': 'lon', 'cal': 'standard','tdict':['ZeroToZero'] }
av = ukp.AutoVivification()
if 'O2' in analysisKeys:
name = 'Oxygen'
if annual:
av[name]['modelFiles'] = listModelDataFiles(jobID, 'ptrc_T', paths.ModelFolder_pref, annual)
av[name]['dataFile'] = WOAFolder+'woa13_all_o00_01.nc'
av[name]['modelcoords'] = medusaCoords
av[name]['datacoords'] = woaCoords
av[name]['modeldetails'] = {'name': name, 'vars':['OXY',], 'convert': ukp.NoChange,'units':'mmol O2/m^3'}
av[name]['datadetails'] = {'name': name, 'vars':['o_an',], 'convert': ukp.oxconvert,'units':'mmol O2/m^3'}
av[name]['layers'] = layerList
av[name]['regions'] = regionList
av[name]['metrics'] = metricList
av[name]['datasource'] = 'WOA'
av[name]['model'] = 'MEDUSA'
av[name]['modelgrid'] = 'eORCA1'
av[name]['gridFile'] = paths.orcaGridfn
av[name]['Dimensions'] = 3
if 'OMZMeanDepth' in analysisKeys:
if annual:
av['OMZMeanDepth']['modelFiles'] = sorted(glob(paths.ModelFolder_pref+jobID+"/"+jobID+"o_1y_*_ptrc_T.nc"))
av['OMZMeanDepth']['dataFile'] = WOAFolder+'woa13_all_o00_01.nc'
else:
print "OMZ Thickness not implemented for monthly data"
assert 0
nc = Dataset(paths.orcaGridfn,'r')
depths = np.abs(nc.variables['gdepw' ][:])
tmask = nc.variables['tmask'][:]
nc.close()
omzthreshold = 20.
def modelMeanOMZdepth(nc,keys):
o2 = nc.variables[keys[0]][:].squeeze()
meandepth = np.ma.masked_where((o2>omzthreshold)+o2.mask + (tmask==0),depths).mean(0)
if meandepth.max() in [0.,0]: return np.array([0.,])
return np.ma.masked_where(meandepth==0., meandepth)
def woaMeanOMZdepth(nc,keys):
o2 = nc.variables[keys[0]][:].squeeze() *44.661
pdepths = np.zeros_like(o2)
lons = nc.variables['lon'][:]
lats = nc.variables['lat'][:]
wdepths = np.abs(nc.variables['depth'][:])
for y,lat in enumerate(lats):
for x,lon in enumerate(lons):
pdepths[:,y,x] = wdepths
wmeanDepth = np.ma.masked_where((o2>omzthreshold)+o2.mask,pdepths).mean(0).data
print "woaMeanOMZdepth",wmeanDepth.min(),wmeanDepth.mean(),wmeanDepth.max()
#assert 0
if wmeanDepth.max() in [0.,0]: return np.array([1000.,])
return np.ma.masked_where(wmeanDepth==0., wmeanDepth)
av['OMZMeanDepth']['modelcoords'] = medusaCoords
av['OMZMeanDepth']['datacoords'] = woaCoords
av['OMZMeanDepth']['modeldetails'] = {'name': 'OMZMeanDepth', 'vars':['OXY',], 'convert': modelMeanOMZdepth,'units':'m'}
av['OMZMeanDepth']['datadetails'] = {'name': 'OMZMeanDepth', 'vars':['o_an',], 'convert': woaMeanOMZdepth,'units':'m'}
av['OMZMeanDepth']['layers'] = ['layerless',]
av['OMZMeanDepth']['regions'] = regionList
av['OMZMeanDepth']['metrics'] = metricList
av['OMZMeanDepth']['datasource'] = 'WOA'
av['OMZMeanDepth']['model'] = 'MEDUSA'
av['OMZMeanDepth']['modelgrid'] = 'eORCA1'
av['OMZMeanDepth']['gridFile'] = paths.orcaGridfn
av['OMZMeanDepth']['Dimensions'] = 2
if 'OMZThickness' in analysisKeys or 'OMZThickness50' in analysisKeys:
if 'OMZThickness' in analysisKeys and 'OMZThickness50' in analysisKeys:
print "Only run one of these at a time"
assert 0
if annual:
av['OMZThickness']['modelFiles'] = sorted(glob(paths.ModelFolder_pref+jobID+"/"+jobID+"o_1y_*_ptrc_T.nc"))
av['OMZThickness']['dataFile'] = WOAFolder+'woa13_all_o00_01.nc'
else:
print "OMZ Thickness not implemented for monthly data"
assert 0
nc = Dataset(paths.orcaGridfn,'r')
thickness = nc.variables['e3t' ][:]
tmask = nc.variables['tmask'][:]
nc.close()
if 'OMZThickness' in analysisKeys: omzthreshold = 20.
if 'OMZThickness50' in analysisKeys: omzthreshold = 50.
def modelOMZthickness(nc,keys):
o2 = nc.variables[keys[0]][:].squeeze()
totalthick = np.ma.masked_where((o2>omzthreshold)+o2.mask+ (tmask==0),thickness).sum(0).data
if totalthick.max() in [0.,0]: return np.array([0.,])
return np.ma.masked_where(totalthick==0., totalthick)
#return np.ma.masked_where((arr>omzthreshold) + (arr <0.) + arr.mask,thickness).sum(0)
def woaOMZthickness(nc,keys):
o2 = nc.variables[keys[0]][:].squeeze() *44.661
pthick = np.zeros_like(o2)
lons = nc.variables['lon'][:]
lats = nc.variables['lat'][:]
zthick = np.abs(nc.variables['depth_bnds'][:,0] - nc.variables['depth_bnds'][:,1])
for y,lat in enumerate(lats):
for x,lon in enumerate(lons):
pthick[:,y,x] = zthick
totalthick = np.ma.masked_where((o2>omzthreshold)+o2.mask,pthick).sum(0).data
if totalthick.max() in [0.,0]: return np.array([0.,])
return np.ma.masked_where(totalthick==0., totalthick)
av['OMZThickness']['modelcoords'] = medusaCoords
av['OMZThickness']['datacoords'] = woaCoords
av['OMZThickness']['modeldetails'] = {'name': 'OMZThickness', 'vars':['OXY',], 'convert': modelOMZthickness,'units':'m'}
av['OMZThickness']['datadetails'] = {'name': 'OMZThickness', 'vars':['o_an',], 'convert': woaOMZthickness,'units':'m'}
av['OMZThickness']['layers'] = ['layerless',]
av['OMZThickness']['regions'] = regionList
av['OMZThickness']['metrics'] = metricList
av['OMZThickness']['datasource'] = 'WOA'
av['OMZThickness']['model'] = 'MEDUSA'
av['OMZThickness']['modelgrid'] = 'eORCA1'
av['OMZThickness']['gridFile'] = paths.orcaGridfn
av['OMZThickness']['Dimensions'] = 2
if 'OMZExtent' in analysisKeys:
if annual:
av['OMZExtent']['modelFiles'] = sorted(glob(paths.ModelFolder_pref+jobID+"/"+jobID+"o_1y_*_ptrc_T.nc"))
av['OMZExtent']['dataFile'] = WOAFolder+'woa13_all_o00_01.nc'
else:
print "OMZ Thickness not implemented for monthly data"
assert 0
nc = Dataset(paths.orcaGridfn,'r')
thickness = nc.variables['e3t' ][:]
tmask = nc.variables['tmask'][:]
nc.close()
if 'OMZExtent' in analysisKeys: omzthreshold = 20.
def modelOMZthickness(nc,keys):
o2 = nc.variables[keys[0]][:].squeeze()
totalthick = np.ma.masked_where((o2>omzthreshold)+o2.mask+ (tmask==0),thickness).sum(0)#.data
if totalthick.max() in [0.,0]: return np.array([0.,])
return totalthick #np.ma.masked_where(totalthick==0., totalthick)
def woaOMZthickness(nc,keys):
o2 = nc.variables[keys[0]][:].squeeze() *44.661
pthick = np.zeros_like(o2.data)
lons = nc.variables['lon'][:]
lats = nc.variables['lat'][:]
zthick = np.abs(nc.variables['depth_bnds'][:,0] - nc.variables['depth_bnds'][:,1])
for y,lat in enumerate(lats):
for x,lon in enumerate(lons):
pthick[:,y,x] = zthick
totalthick = np.ma.masked_where((o2>omzthreshold)+o2.mask,pthick).sum(0).data
if totalthick.max() in [0.,0]: return np.array([0.,])
totalthick = np.ma.masked_where(totalthick==0.,totalthick)
print "woaOMZthickness:mean thickness:", totalthick.mean(),totalthick.min(),totalthick.max()
# from matplotlib import pyplot
# pyplot.pcolormesh(totalthick)
# pyplot.colorbar()
# pyplot.show()
# assert 0
return totalthick
av['OMZExtent']['modelcoords'] = medusaCoords
av['OMZExtent']['datacoords'] = woaCoords
av['OMZExtent']['modeldetails'] = {'name': 'OMZExtent', 'vars':['OXY',], 'convert': modelOMZthickness, 'units':'m'}
av['OMZExtent']['datadetails'] = {'name': 'OMZExtent', 'vars':['o_an',], 'convert': woaOMZthickness, 'units':'m'}
av['OMZExtent']['layers'] = ['layerless',]
av['OMZExtent']['regions'] = regionList
av['OMZExtent']['metrics'] = metricList
av['OMZExtent']['datasource'] = 'WOA'
av['OMZExtent']['model'] = 'MEDUSA'
av['OMZExtent']['modelgrid'] = 'eORCA1'
av['OMZExtent']['gridFile'] = paths.orcaGridfn
av['OMZExtent']['Dimensions'] = 2
if 'TotalOMZVolume' in analysisKeys or 'TotalOMZVolume50' in analysisKeys:
if 'TotalOMZVolume' in analysisKeys and 'TotalOMZVolume50' in analysisKeys:
print "Only run one of these at a time"
assert 0
if annual:
av['TotalOMZVolume']['modelFiles'] = sorted(glob(paths.ModelFolder_pref+jobID+"/"+jobID+"o_1y_*_ptrc_T.nc"))
av['TotalOMZVolume']['dataFile'] = WOAFolder+'woa13_all_o00_01.nc'
else:
print "OMZ volume not implemented for monthly data"
assert 0
nc = Dataset(paths.orcaGridfn,'r')
try:
pvol = nc.variables['pvol' ][:]
tmask = nc.variables['tmask'][:]
except:
tmask = nc.variables['tmask'][:]
area = nc.variables['e2t'][:] * nc.variables['e1t'][:]
pvol = nc.variables['e3t'][:] *area
pvol = np.ma.masked_where(tmask==0,pvol)
nc.close()
if 'TotalOMZVolume' in analysisKeys: omzthreshold = 20.
if 'TotalOMZVolume50' in analysisKeys: omzthreshold = 50.
def modelTotalOMZvol(nc,keys):
arr = np.ma.array(nc.variables[keys[0]][:].squeeze())
return np.ma.masked_where((arr>omzthreshold) + pvol.mask + arr.mask,pvol).sum()
def woaTotalOMZvol(nc,keys):
arr = nc.variables[keys[0]][:].squeeze() *44.661
#area = np.zeros_like(arr[0])
pvol = np.zeros_like(arr)
#np.ma.masked_wjhere(arr.mask + (arr <0.)+(arr >1E10),np.zeros_like(arr))
lons = nc.variables['lon'][:]
lats = nc.variables['lat'][:]
#lonbnds = nc.variables['lon_bnds'][:]
latbnds = nc.variables['lat_bnds'][:]
zthick = np.abs(nc.variables['depth_bnds'][:,0] - nc.variables['depth_bnds'][:,1])
for y,lat in enumerate(lats):
area = ukp.Area([latbnds[y,0],0.],[latbnds[y,1],1.])
for z,thick in enumerate(zthick):
pvol[z,y,:] = np.ones_like(lons)*area*thick
return np.ma.masked_where(arr.mask + (arr >omzthreshold)+(arr <0.),pvol).sum()
av['TotalOMZVolume']['modelcoords'] = medusaCoords
av['TotalOMZVolume']['datacoords'] = woaCoords
av['TotalOMZVolume']['modeldetails'] = {'name': 'TotalOMZVolume', 'vars':['OXY',], 'convert': modelTotalOMZvol,'units':'m^3'}
av['TotalOMZVolume']['datadetails'] = {'name': 'TotalOMZVolume', 'vars':['o_an',], 'convert': woaTotalOMZvol,'units':'m^3'}
av['TotalOMZVolume']['layers'] = ['layerless',]
av['TotalOMZVolume']['regions'] = ['regionless',]
av['TotalOMZVolume']['metrics'] = ['metricless', ]
av['TotalOMZVolume']['datasource'] = 'WOA'
av['TotalOMZVolume']['model'] = 'MEDUSA'
av['TotalOMZVolume']['modelgrid'] = 'eORCA1'
av['TotalOMZVolume']['gridFile'] = paths.orcaGridfn
av['TotalOMZVolume']['Dimensions'] = 1
if 'ZonalCurrent' in analysisKeys:
name = 'ZonalCurrent'
av[name]['modelFiles'] = listModelDataFiles(jobID, 'grid_U', paths.ModelFolder_pref, annual)
if annual:
av[name]['dataFile'] = paths.GODASFolder+'ucur.clim.nc'
av[name]['modelcoords'] = medusaUCoords
av[name]['datacoords'] = godasCoords
def applyLandMask1e3(nc,keys):
return applyLandMask(nc,keys)*1000.
av[name]['modeldetails'] = {'name': name, 'vars':['vozocrtx',], 'convert': applyLandMask1e3,'units':'mm/s'}
av[name]['datadetails'] = {'name': name, 'vars':['ucur',], 'convert': ukp.NoChange,'units':'mm/s'}
av[name]['layers'] = layerList
av[name]['regions'] = regionList
av[name]['metrics'] = metricList
av[name]['datasource'] = 'GODAS'
av[name]['model'] = 'NEMO'
av[name]['modelgrid'] = 'eORCA1'
av[name]['gridFile'] = './data/eORCA1_gridU_mesh.nc'
av[name]['Dimensions'] = 3
if 'MeridionalCurrent' in analysisKeys:
name = 'MeridionalCurrent'
av[name]['modelFiles'] = listModelDataFiles(jobID, 'grid_V', paths.ModelFolder_pref, annual)
if annual:
av[name]['dataFile'] = paths.GODASFolder+'vcur.clim.nc'
av[name]['modelcoords'] = medusaVCoords
av[name]['datacoords'] = godasCoords
def applyLandMask1e3(nc,keys):
return applyLandMask(nc,keys)*1000.
av[name]['modeldetails'] = {'name': name, 'vars':['vomecrty',], 'convert': applyLandMask1e3,'units':'mm/s'}
av[name]['datadetails'] = {'name': name, 'vars':['vcur',], 'convert': ukp.NoChange,'units':'mm/s'}
av[name]['layers'] = layerList
av[name]['regions'] = regionList
av[name]['metrics'] = metricList
av[name]['datasource'] = 'GODAS'
av[name]['model'] = 'NEMO'
av[name]['modelgrid'] = 'eORCA1'
av[name]['gridFile'] = './data/eORCA1_gridV_mesh.nc'
av[name]['Dimensions'] = 3
if 'VerticalCurrent' in analysisKeys:
name = 'VerticalCurrent'
av[name]['modelFiles'] = listModelDataFiles(jobID, 'grid_W', paths.ModelFolder_pref, annual)
if annual:
av[name]['dataFile'] = paths.GODASFolder+'dzdt.clim.nc'
av[name]['modelcoords'] = medusaWCoords
av[name]['datacoords'] = godasCoords
def applyLandMask1e6(nc,keys):
return applyLandMask(nc,keys)*1000000.
av[name]['modeldetails'] = {'name': name, 'vars':['vovecrtz',], 'convert': applyLandMask1e6,'units':'um/s'}
av[name]['datadetails'] = {'name': name, 'vars':['dzdt',], 'convert': ukp.NoChange,'units':'um/s'}
av[name]['layers'] = layerList
av[name]['regions'] = regionList
av[name]['metrics'] = metricList
av[name]['datasource'] = 'GODAS'
av[name]['model'] = 'NEMO'
av[name]['modelgrid'] = 'eORCA1'
av[name]['gridFile'] = './data/eORCA1_gridW_mesh.nc'
av[name]['Dimensions'] = 3
#####
# Calling timeseriesAnalysis
# This is where the above settings is passed to timeseriesAnalysis, for the actual work to begin.
# We loop over all fiels in the first layer dictionary in the autovificiation, av.
#
# Once the timeseriesAnalysis has completed, we save all the output shelves in a dictionairy.
# At the moment, this dictioary is not used, but we could for instance open the shelve to highlight specific data,
# (ie, andy asked to produce a table showing the final year of data.
shelves = {}
shelves_insitu={}
for name in av.keys():
continue
print "------------------------------------------------------------------"
print "analysis-Timeseries.py:\tBeginning to call timeseriesAnalysis for ", name
if len(av[name]['modelFiles']) == 0:
print "analysis-Timeseries.py:\tWARNING:\tmodel files are not found:",name,av[name]['modelFiles']
if strictFileCheck: assert 0
modelfilesexists = [os.path.exists(f) for f in av[name]['modelFiles']]
if False in modelfilesexists:
print "analysis-Timeseries.py:\tWARNING:\tnot model files do not all exist:",av[name]['modelFiles']
for f in av[name]['modelFiles']:
if os.path.exists(f):continue
print f, 'does not exist'
if strictFileCheck: assert 0
if av[name]['dataFile']!='':
if not os.path.exists(av[name]['dataFile']):
print "analysis-Timeseries.py:\tWARNING:\tdata file is not found:",av[name]['dataFile']
if strictFileCheck: assert 0
#####
# time series and traffic lights.
tsa = timeseriesAnalysis(
av[name]['modelFiles'],
av[name]['dataFile'],
dataType = name,
modelcoords = av[name]['modelcoords'],
modeldetails = av[name]['modeldetails'],
datacoords = av[name]['datacoords'],
datadetails = av[name]['datadetails'],
datasource = av[name]['datasource'],
model = av[name]['model'],
jobID = jobID,
layers = av[name]['layers'],
regions = av[name]['regions'],
metrics = av[name]['metrics'],
workingDir = shelvedir,
imageDir = imagedir,
grid = av[name]['modelgrid'],
gridFile = av[name]['gridFile'],
clean = False,
)
#####
# Profile plots
if av[name]['Dimensions'] == 3:
profa = profileAnalysis(
av[name]['modelFiles'],
av[name]['dataFile'],
dataType = name,
modelcoords = av[name]['modelcoords'],
modeldetails = av[name]['modeldetails'],
datacoords = av[name]['datacoords'],
datadetails = av[name]['datadetails'],
datasource = av[name]['datasource'],
model = av[name]['model'],
jobID = jobID,
layers = list(np.arange(102)), # 102 because that is the number of layers in WOA Oxygen
regions = av[name]['regions'],
metrics = ['mean',],
workingDir = shelvedir,
imageDir = imagedir,
grid = av[name]['modelgrid'],
gridFile = av[name]['gridFile'],
clean = False,
)
#shelves[name] = profa.shelvefn
#shelves_insitu[name] = profa.shelvefn_insitu
#shelves[name] = tsa.shelvefn
#shelves_insitu[name] = tsa.shelvefn_insitu
#####
# Map of OMZs
# idea here is to produce a plot showing the various regions maps
# we want to run it under various regions
# we want to
# all we need is a model dataset, a data set, a depth
#####
# time series and traffic lights.
name = 'Oxygen'
em = extentMaps(
av[name]['modelFiles'],
av[name]['dataFile'],
dataType = name,
modelcoords = av[name]['modelcoords'],
modeldetails = av[name]['modeldetails'],
datacoords = av[name]['datacoords'],
datadetails = av[name]['datadetails'],
datasource = av[name]['datasource'],
model = av[name]['model'],
jobID = jobID,
layers = ['500m',],#'Surface',],'1000m'
regions = ['Global',],
workingDir = shelvedir,
imageDir = ukp.folder(imagedir +'ExtentMaps/Oxygen'),
contours = [20.,],
zrange = [0.,400.],
grid = av[name]['modelgrid'],
gridFile = av[name]['gridFile'],
debug = True,
maskOrZero = 'mask',
)
name = 'Oxygen50'
em = extentMaps(
av[name]['modelFiles'],
av[name]['dataFile'],
dataType = name,
modelcoords = av[name]['modelcoords'],
modeldetails = av[name]['modeldetails'],
datacoords = av[name]['datacoords'],
datadetails = av[name]['datadetails'],
datasource = av[name]['datasource'],
model = av[name]['model'],
jobID = jobID,
layers = ['1000m','500m',],#'Surface',],
regions = ['Global',],
workingDir = shelvedir,
imageDir = ukp.folder(imagedir +'ExtentMaps/Oxygen50'),
contours = [50.,],
zrange = [0.,400.],
grid = av[name]['modelgrid'],
gridFile = av[name]['gridFile'],
debug = True,
maskOrZero = 'mask',
)
name = 'Oxygen80'
em = extentMaps(
av[name]['modelFiles'],
av[name]['dataFile'],
dataType = name,
modelcoords = av[name]['modelcoords'],
modeldetails = av[name]['modeldetails'],
datacoords = av[name]['datacoords'],
datadetails = av[name]['datadetails'],
datasource = av[name]['datasource'],
model = av[name]['model'],
jobID = jobID,
layers = ['1000m','500m',],#'Surface',],
regions = ['Global',],
workingDir = shelvedir,
imageDir = ukp.folder(imagedir +'ExtentMaps/Oxygen80'),
contours = [50.,],
zrange = [0.,400.],
grid = av[name]['modelgrid'],
gridFile = av[name]['gridFile'],
debug = True,
maskOrZero = 'mask',
)
name = 'OMZExtent'
em = extentMaps(
av[name]['modelFiles'],
av[name]['dataFile'],
dataType = name,
modelcoords = av[name]['modelcoords'],
modeldetails = av[name]['modeldetails'],
datacoords = av[name]['datacoords'],
datadetails = av[name]['datadetails'],
datasource = av[name]['datasource'],
model = av[name]['model'],
jobID = jobID,
layers = ['layerless',],
regions = ['Global',],
workingDir = shelvedir,
imageDir = ukp.folder(imagedir +'ExtentMaps/OMZ'),
contours = [1.,],
zrange = 'auto',
grid = av[name]['modelgrid'],
gridFile = av[name]['gridFile'],
debug = True,
maskOrZero = 'zero'
)
def main():
try: jobID = argv[1]
except:
jobID = "u-ab749"
if 'debug' in argv[1:]: suite = 'debug'
analysis_omz(jobID =jobID, )#clean=1)
#if suite == 'all':
#analysis_timeseries(jobID =jobID,analysisSuite='FullDepth', z_component = 'FullDepth',)#clean=1)
if __name__=="__main__":
main()