-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathputtingItAllTogether.R
330 lines (275 loc) · 10.4 KB
/
puttingItAllTogether.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# What we need to do is load in the model,
# 1: predict the gfp
# If gfp, then calculate the max of the sum of all classes within g7, g8, g9 g10
require(reticulate)
mainpy <- import_from_path('main', './py')
# List all the files
models <- list.files('./models/', full.names = T)
cat("These are the Models:\n")
cat(models, sep=' ')
# List of all data for predicting in order of the models
predData <- c(
'cell_types_AMCK/AMCK_7238.csv',
'cell_types_img3_1/7238_41_41_1_cell_types.npy',
'cell_types_img4_2/7238_41_41_1_cell_types.npy',
'cell_types_img1_123/7238_41_41_3_cell_types.npy',
'cell_types_R3J/R3J_7238.csv',
'RAMCK/ramck.csv'
)
predData <- paste0("./trainingData/", predData)
predictedClasses <- list()
# AMCK model
i = 1
model <- invisible(keras::load_model_hdf5(models[i]))
pred <- data.frame(data.table::fread(predData[i], header = T), row.names=1)
pred <- as.matrix(pred)
#pred <- array(pred, c(dim(pred), 1))
pred <- mainpy$featureMaker(pred, as.integer(10))
predictedClasses[[ 'amck' ]] <- model$predict(pred)
# cy5 model
i = 2
model <- invisible(keras::load_model_hdf5(models[i]))
image <- RcppCNPy::npyLoad(predData[i])
imgDim <- as.integer(strsplit(rev(strsplit(predData[i], '/')[[1]])[1],'_')[[1]][1:4])
dim(image) <- imgDim
predictedClasses[[ 'cy5' ]] <- model$predict(image)
# gfp model
i = 3
model <- invisible(keras::load_model_hdf5(models[i]))
image <- RcppCNPy::npyLoad(predData[i])
imgDim <- as.integer(strsplit(rev(strsplit(predData[i], '/')[[1]])[1],'_')[[1]][1:4])
dim(image) <- imgDim
predictedClasses[[ 'gfp' ]] <- model$predict(image)
# label model
i = 4
model <- invisible(keras::load_model_hdf5(models[i]))
image <- RcppCNPy::npyLoad(predData[i])
imgDim <- as.integer(strsplit(rev(strsplit(predData[i], '/')[[1]])[1],'_')[[1]][1:4])
dim(image) <- imgDim
predictedClasses[[ 'image' ]] <- model$predict(image)
# R3J model
i = 5
model <- invisible(keras::load_model_hdf5(models[i]))
pred <- data.frame(data.table::fread(predData[i], header = T), row.names=1)
pred <- as.matrix(pred)
#pred <- array(pred, c(dim(pred), 1))
pred <- mainpy$featureMaker(pred, as.integer(10))
predictedClasses[[ 'r3j' ]] <- model$predict(pred)
# ramck model
i = 6
model <- invisible(keras::load_model_hdf5(models[i]))
pred <- data.frame(data.table::fread(predData[i], header = T), row.names=1)
pred <- as.matrix(pred)
#pred <- array(pred, c(dim(pred), 1))
pred <- mainpy$featureMaker(pred, as.integer(10))
predictedClasses[[ 'ramck' ]] <- model$predict(pred)
#########################################################################
classNames <- c('L1', "L2", "L3", "L4", "L5", "L6", "G7", "G8", "G9", 'G10', 'R11', 'R12', 'R13', 'N14', 'N15', 'N16')
# Grab the correct Classes to play with
corrClass <- read.csv("./trainingData/cell_types_label.csv")
row.names(corrClass) <- corrClass[,1]
corrClass <- corrClass[,-1,drop=F]
# Subset the models into the multiclass vs binary
multiClassModels <- predictedClasses[c(1,4,5,6)]
#multiClassModels <- predictedClasses[c(4,6)]
#multiClassModels <- predictedClasses[c(1,5)]
binaryClassModels <- predictedClasses[c(2,3)]
names(multiClassModels)
# Lets see how this does without binary guidance
allClassComp <- data.frame(matrix(nrow = dim(corrClass)[1], ncol = 3))
colnames(allClassComp) <- c('correctLabel', 'predictedLabel', 'topModel')
for( i in 1:dim(corrClass)[1]){
# Create the data frame of all collected models
modelFrame <- data.frame(
matrix(
nrow = length(multiClassModels),
ncol = dim(multiClassModels[[1]])[2]
))
row.names(modelFrame) <- names(multiClassModels)
# Loop through each model and collect the cells scores
for(j in 1:length(multiClassModels)){
modelFrame[j, ] <- multiClassModels[[j]][i,]
}
# Compute the sum of all models
predictedClass <- apply(modelFrame, 2, sum)
# Which class was predicted correctly?
classPred <- which.max(predictedClass)
# Which model dominated
modelMax <- which.max(modelFrame[,classPred])
allClassComp[i, 1] <- corrClass[i,]
allClassComp[i, 2] <- as.integer(classPred)
allClassComp[i, 3] <- names(multiClassModels)[modelMax]
}
allClassCompTable <- table(allClassComp[1] == allClassComp[2])
allClassCompSuccess <- 100 * (allClassCompTable['TRUE']/sum(allClassCompTable) )
cat('\nAll class success is\n')
cat(round(allClassCompSuccess, digits=2), " %\n")
# Lets see how this does WITH binary guidance
binClassComp <- data.frame(matrix(nrow = dim(corrClass)[1], ncol = 3))
colnames(binClassComp) <- c('correctLabel', 'predictedLabel', 'topModel')
for( i in 1:dim(corrClass)[1]){
#i=1
# Is the cell GPF?
if(which.max(binaryClassModels[['gfp']][i,]) == 2){
cellTypes <- c(5,6,7,8,9,10)
}else if(which.max(binaryClassModels[['cy5']][i,]) == 2){
cellTypes <- c(11,12,13,14)
}else{
cellTypes <- c(1, 2, 3, 4, 14, 15, 16)
}
# Create the data frame of all collected models
modelFrame <- data.frame(
matrix(
nrow = length(multiClassModels),
ncol = dim(multiClassModels[[1]][,cellTypes])[2]
))
row.names(modelFrame) <- names(multiClassModels)
colnames(modelFrame) <- cellTypes
# Loop through each model and collect the cells scores
for(j in 1:length(multiClassModels)){
modelFrame[j, ] <- multiClassModels[[j]][i,cellTypes]
}
# Compute the sum of all models
predictedClass <- apply(modelFrame, 2, sum)
# Which class was predicted correctly?
classPred <- names(which.max(predictedClass))
# Which model dominated
modelMax <- which.max(modelFrame[,which.max(predictedClass)])
binClassComp[i, 1] <- corrClass[i,]
binClassComp[i, 2] <- as.integer(classPred)
binClassComp[i, 3] <- names(multiClassModels)[modelMax]
}
# Bin
binClassCompTable <- table(binClassComp[1] == binClassComp[2])
binClassCompSuccess <- 100 * (binClassCompTable['TRUE']/sum(binClassCompTable) )
cat('Binary guided success is\n')
cat(round(binClassCompSuccess, digits=2), " %")
dev.new(width = 8, height = 5)
par(mfrow = c(1, 2))
barplot(
summary(as.factor(allClassComp$topModel)),
main = 'All Class Success',
border = NA
)
barplot(
summary(as.factor(binClassComp$topModel)),
main = 'Bin Class Success',
border = NA
)
###################################################################
# Which classes are most mis classified?
mostCommonLabels <- summary(as.factor(binClassComp$correctLabel))
labs <- as.integer(names(mostCommonLabels))
misClassInfo <- data.frame(matrix(nrow = length(labs), ncol = 3))
misClassInfo[,1] <- mostCommonLabels
classMisClasses <- list()
for(i in 1:length(labs)){
# Identify the number of correctly identified neurons
labClassSel <- binClassComp$correctLabel == labs[i]
selectedNeurons <- binClassComp[labClassSel,]
# What other classes was this class assigned to? and why?
newName <- paste0(classNames[i], ' : ', dim(selectedNeurons)[1])
classMisClass <- sort(summary(as.factor(selectedNeurons$predictedLabel)), TRUE)[1:3]
classMisClassNames <- as.integer(names(classMisClass))
names(classMisClass) <- classNames[classMisClassNames]
classMisClasses[[ newName ]] <- list()
classMisClasses[[ newName ]][[ 'misClassClasses' ]] <- classMisClass
barLabels <- c()
for(j in 1:length(classMisClassNames)){
logic <- selectedNeurons$predictedLabel == classMisClassNames[j]
toAdd <- sort(summary(as.factor(selectedNeurons[logic, 'topModel'])), TRUE)[1]
barLabels[j] <- paste0(names(toAdd), " : ", toAdd)
}
classMisClasses[[ newName ]][[ 'barLabels' ]] <- barLabels
correct <- table(selectedNeurons$correctLabel == selectedNeurons$predictedLabel)['TRUE']
misClassInfo[i,2] <- correct
modelTopName <- names(which.max(summary(as.factor(selectedNeurons$topModel))))
modelTopNum <- max(summary(as.factor(selectedNeurons$topModel)))
misClassInfo[i,3] <- paste0(modelTopName, "\n", modelTopNum, " / ", misClassInfo[i,1])
}
################################################################
## Visualize the class misclassification rate
misClassInfo[is.na(misClassInfo)] <- 0
bpDims <- barplot(
misClassInfo[,2] / misClassInfo[,1] * 100,
ylim = c(0, 100),
ylab= '% correct',
border=NA
)
par(xpd=T)
# Class labels
text(
bpDims,
par('usr')[3] - yinch(.5),
paste0(classNames, "\nn=", misClassInfo[,1]),
cex=.9
)
# Dominate model
text(
bpDims - xinch(.1),
par('usr')[3] + yinch(.5),
misClassInfo[,3],
cex = .9,
srt=90
)
# bar percent label
text(
bpDims - xinch(.1),
(misClassInfo[,2] / misClassInfo[,1] * 100) + yinch(.4),
paste0(round(misClassInfo[,2] / misClassInfo[,1] * 100, digits =0),' %'),
font = 2,
srt = 90
)
################################################################
# Visual misclassified to
dev.new(width = 10, height = 10)
mfrowDim <- ceiling(sqrt(length(classMisClasses)))
par(mfrow = c(mfrowDim, mfrowDim))
for(i in 1:length(classMisClasses)){
mainName <- names(classMisClasses[i])
col <- RColorBrewer::brewer.pal(100, 'Accent')[1:3]
bpDims <- barplot(
classMisClasses[[i]][[1]],
main = mainName,
col = col,
border=NA
)
# Add the model misclass
text(
apply(bpDims, 1, 'mean'),
par('usr')[3]+yinch(.1),
classMisClasses[[i]][[2]],
srt=90,
font=2,
cex = 1.3,
adj = 0
)
}
################################################################
# Visualize the label scores
dev.new(width = 12, height =5)
cols <- RColorBrewer::brewer.pal(n = length(multiClassModels), 'Dark2')
bpDims <- barplot(
as.matrix(modelFrame),
beside = T,
col = cols,
ylim = c(0,1),
xaxt = 'n',
main = row.names(corrClass)[i],
border = NA
)
legend("top",
legend = names(multiClassModels),
fill = cols,
horiz = T,
bty='n',
border = NA)
par(xpd=T)
text(
apply(bpDims, 2, mean),
par('usr')[3] -yinch(.2),
classNames,
col = ifelse(corrClass[i,] == seq(1,16), 'red', 'black'),
font = ifelse(corrClass[i,] == seq(1,16), 2, 1),
cex = ifelse(corrClass[i,] == seq(1,16), 1.5, 1)
)