-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPolynomialDivision.cpp
176 lines (158 loc) · 4.06 KB
/
PolynomialDivision.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#include <iostream>
#include <chrono>
#include "Term.h"
#include "Polynomial.h"
#define MAX(a,b) ((a > b) ? a : b)
struct Timer
{
std::chrono::time_point<std::chrono::high_resolution_clock> start, end;
std::chrono::duration<float> duration;
const char* timerName;
Timer(const char* name) : timerName(name)
{
duration = std::chrono::high_resolution_clock::duration::zero();
}
void timeStart()
{
start = std::chrono::high_resolution_clock::now();
}
void timeEnd()
{
end = std::chrono::high_resolution_clock::now();
duration += end - start;
}
~Timer()
{
std::cout << timerName << " took " << duration.count() * 1000.0f << "ms" << std::endl;
}
};
/*
Prints out the quotients and remainder at some point in the division algorithm.
Set step = -1 to print final results.
*/
template<unsigned int N>
void printStep(int step, const Polynomial<N>& p, const std::vector<Polynomial<N>>& Q, const Polynomial<N>& r)
{
if (step != -1)
{
std::cout << "Step " << step << ":" << std::endl;
std::cout << "p: ";
p.printP();
}
else std::cout << "Final Results:" << std::endl;
for (unsigned int i = 0; i < Q.size(); ++i)
{
std::cout << "q" << i + 1 << ": ";
Q[i].printP();
}
std::cout << "r: ";
r.printP();
std::cout << std::endl;
if (step == -1)
{
std::cout << "------------------------------------------------" << std::endl;
std::cout << std::endl;
}
}
/*
Returns remainder of f upon division by a set of Polynomials F.
*/
template<unsigned int N>
Polynomial<N> MultivariatePolynomialDivision(Polynomial<N> f, const std::vector<Polynomial<N>>& F, const bool printEveryStep)
{
unsigned int s = F.size();
const char* ordering = f.getOrdering();
// Create list of quotients and remainder
std::vector<Polynomial<N>> Q;
for (unsigned int i = 0; i < s; ++i)
Q.emplace_back(Polynomial<N>(ordering));
Polynomial<N> r = Polynomial<N>(ordering);
Polynomial<N>& p = f;
// Division algorithm
int step = 1;
while (p.leadingTerm().c != 0)
{
unsigned int i = 0;
bool divisionOccurred = false;
while (i < s && !divisionOccurred)
{
// Checks if the leading term of f_i divides the leading term of p
if (F[i].leadingTerm().divides(p.leadingTerm()))
{
Q[i] += p.leadingTerm() / F[i].leadingTerm();
p -= F[i] * (p.leadingTerm() / F[i].leadingTerm());
divisionOccurred = true;
if (printEveryStep)
{
printStep(step, p, Q, r);
step++;
}
}
else
{
i++;
}
}
if (!divisionOccurred)
{
r += p.leadingTerm();
p -= p.leadingTerm();
if (printEveryStep)
{
printStep(step, p, Q, r);
step++;
}
}
}
// Print final results
if (printEveryStep)
{
printStep(-1, p, Q, r);
}
return r;
}
/*
Returns the least common multiple of the leading monomials of f and g.
*/
template<unsigned int N>
Term<N> LeadingMonomialLCM(const Polynomial<N>& f, const Polynomial<N>& g)
{
std::array<unsigned int, N> alpha = f.leadingTerm().degree();
std::array<unsigned int, N> beta = g.leadingTerm().degree();
std::array<unsigned int, N> gamma{};
for (int i = 0; i < N; ++i)
gamma[i] = MAX(alpha[i], beta[i]);
return Term<N>(1.0, gamma);
}
/*
Computes the S-Polynomial of f and g.
*/
template<unsigned int N>
Polynomial<N> S_Polynomial(const Polynomial<N>& f, const Polynomial<N>& g)
{
return f * (LeadingMonomialLCM(f, g) / f.leadingTerm()) - g * (LeadingMonomialLCM(f, g) / g.leadingTerm());
}
/*
Converts a set of Polynomials F into a Grobner basis using Buchberger's Algorithm.
*/
template<unsigned int N>
void ConvertToGrobnerBasis(std::vector<Polynomial<N>>& F)
{
LOOP:
std::vector<Polynomial<N>> G = F;
for (unsigned int i = 0; i < G.size(); ++i)
{
for (unsigned int j = 0; j < G.size(); ++j)
{
if (i != j)
{
Polynomial<N> r = MultivariatePolynomialDivision(S_Polynomial(G[i], G[j]), G, false);
if (!r.isZero())
{
F.emplace_back(r);
goto LOOP;
}
}
}
}
}