Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Segmentation fault using mpi GAP_fit #673

Open
Ash-Dickson opened this issue Jan 8, 2025 · 22 comments
Open

Segmentation fault using mpi GAP_fit #673

Ash-Dickson opened this issue Jan 8, 2025 · 22 comments

Comments

@Ash-Dickson
Copy link

Hi all,

I've been having issues trying to utilise the mpi version of GAP_fit. I compiled with the latest version of QUIP, as per the instructions provided on github (including the added steps for mpi). When I try to fit a potential, I get a segmentation fault during the calculation of the sparse covariance matrices:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:
#0  0x15288caa7d4f in ???
#1  0x15288caa7cbb in ???
#2  0x15288caa9354 in ???
#3  0x15288caedae6 in ???
#4  0xffffffffffffffff in ???
#0  0x1480ceb0cd4f in ???
#0  0x14ee75f4bd4f in ???
srun: error: nid005254: tasks 2,4,6,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62: Segmentation fault
srun: launch/slurm: _step_signal: Terminating StepId=8461484.0

Further to this, the total system memory doesn't seem to display the memory I would expect. For instance, when using 1 node with 256 GB of memory, the total system memory is 256. However, when running with e.g. 4 nodes, this number remains the same. I compiled on archer2 with the existing architecture file for archer2+openmp+openmpi.

The details of my GAP installation are below:

libAtoms::Hello World: 2025-01-07 17:36:39
libAtoms::Hello World: git version  https://github.com/libAtoms/QUIP.git,v0.9.14-37-g61fbbd7bb-dirty
libAtoms::Hello World: QUIP_ARCH    archer2_mpich+openmp
libAtoms::Hello World: compiled on  Dec 19 2024 at 16:19:54
libAtoms::Hello World: MPI parallelisation with 192 processes
libAtoms::Hello World: OpenMP parallelisation with 2 threads
WARNING: libAtoms::Hello World: environment variable OMP_STACKSIZE not set explicitly. The default value - system and compiler dependent - may be too small for some applications.
libAtoms::Hello World: MPI run with the same seed on each process
libAtoms::Hello World: Random Seed = -712267007
libAtoms::Hello World: global verbosity = 0

My GAP input is as follows (I presume this is correct after the update to allow single run sparsification?):

# Input File
n='1'
infile="database.xyz"
outfile="gp${n}.xml"

# Gap-fit Settings
settings="sparse_jitter         = 1e-8 \
	  default_sigma         = {0.002 0.02 0.02 0.0} \
      e0={Ba:-692.188:O:-430.076:Y:-1038.578:Cu:-1305.806} \
      config_type_sigma={YBCO7:0.002:0.02:0.02:0.0:YBCO6:0.005:0.05:0.05:0.0:Y2O3:0.005:0.05:0.05:0.0:BaO:0.005:0.05:0.05:0.0:Cu2O:0.005:0.05:0.05:0.0:O2:0.005:0.05:0.05:0.0} \
      core_param_file=pairpot.xml \
      core_ip_args={IP Glue} \
      energy_parameter_name=dft_energy \
      force_parameter_name=dft_force "

# Two-body descriptors with gaussian kernel
k2b_params="cutoff          = 5.0 \
	   cutoff_transition_width = 1.0 \
	   delta           = 2.0 \
           n_sparse        = 20 \
           sparse_method   = uniform \
           covariance_type = ARD_SE \
           theta_uniform   = 1.0"

k2b_Cu_Cu="distance_2b add_species       = F \
                       Z1                = 29 \
                       Z2                = 29 \
                       ${k2b_params}"

k2b_Cu_O="distance_2b add_species       = F \
                       Z1                = 29 \
                       Z2                = 8 \
                       ${k2b_params}"

k2b_Cu_Y="distance_2b add_species       = F \
                       Z1                = 29 \
                       Z2                = 39 \
                       ${k2b_params}"

k2b_Cu_Ba="distance_2b add_species       = F \
                       Z1                = 29 \
                       Z2                = 56 \
                       ${k2b_params}"

k2b_O_O="distance_2b add_species       = F \
                       Z1                = 8 \
                       Z2                = 8 \
                       ${k2b_params}"

k2b_O_Ba="distance_2b add_species       = F \
                       Z1                = 8 \
                       Z2                = 56 \
                       ${k2b_params}"

k2b_O_Y="distance_2b add_species       = F \
                        Z1                = 8 \
                        Z2                = 39 \
                        ${k2b_params}"

k2b_Y_Y="distance_2b add_species       = F \
                       Z1                = 39 \
                       Z2                = 39 \
                       ${k2b_params}"

k2b_Y_Ba="distance_2b add_species       = F \
                       Z1                = 39 \
                       Z2                = 56 \
                       ${k2b_params}"
k2b_Ba_Ba="distance_2b add_species       = F \
                       Z1                = 56 \
                       Z2                = 56 \
                       ${k2b_params}"



# SOAP Descriptors
soap_params="l_max                   = 4 \
             n_max                   = 4 \
             cutoff                  = 4 \
             cutoff_transition_width = 0.5 \
             atom_sigma              = 0.5 \
             n_sparse                = 300 \
             zeta                    = 4 \
             delta                   = 0.2 \
             covariance_type         = dot_product \
             n_species               = 4 \
             species_Z               = {8 29 39 56} \
             sparse_method           = cur_points"
	        #  R_mix=T Z_mix=T K=300 sym_mix=T coupling=F" #compression

soap_O="soap add_species       = F \
              Z                 = 8 \
              ${soap_params}"

soap_Cu="soap add_species = F \
              Z           = 29 \
              ${soap_params}"

soap_Y="soap add_species       = F \
              Z                 = 39 \
              ${soap_params}"

soap_Ba="soap add_species       = F \
              Z                 = 56 \
              ${soap_params}"

# Run the Program
exec="/work/e05/e05/ash141/codes/QUIP2/QUIP/build/archer2_mpich+openmp/gap_fit"
srun $exec atoms_filename=$infile gap={{$k2b_Cu_Cu}:{$k2b_Cu_O}:{$k2b_Cu_Y}:{$k2b_Cu_Ba}:{$k2b_O_O}:{$k2b_O_Ba}:{$k2b_O_Y}:{$k2b_Y_Y}:{$k2b_Y_Ba}:{$k2b_Ba_Ba}:{$soap_O}:{$soap_Cu}:{$soap_Y}:{$soap_Y}} $settings gp_file=$outfile

Thank you in advance for any help!

@albapa
Copy link
Member

albapa commented Jan 8, 2025

A suggestion that sometimes helps: have
ulimit -s unlimited

before you execute the command. Let us know if this helps.

@Ash-Dickson
Copy link
Author

Hi, thanks for the quick response. I already have this in my slurm submission script unfortunately.

@albapa
Copy link
Member

albapa commented Jan 8, 2025

Thanks. Is the snippet above the full output of your program? I.e. it stops after
libAtoms::Hello World: global verbosity = 0?

@Ash-Dickson
Copy link
Author

Do you mean is the segmentation fault above the hello world? It seems to run all the way up until QR decomposition then crashes and returns the memory error.

@albapa
Copy link
Member

albapa commented Jan 8, 2025

Can you post the output, please? Thanks.

@Ash-Dickson
Copy link
Author

This is quite long but:

Finished sparse covariance matrix calculation of coordinate 14
Covariance matrix 100% |********************|  22.2 /  22.2 s
TIMER: gpFull_covarianceMatrix_sparse_Coordinate14_sparse done in 4.0245069999999714 cpu secs, 2.0153370723128319 wall clock secs, 2.0153461879999668 mpi wall secs.
TIMER: gpFull_covarianceMatrix_sparse_Coordinate14        done in 4.0246789999999919 cpu secs, 2.0157340802252293 wall clock secs, 2.0157324669999070 mpi wall secs.
TIMER: gpFull_covarianceMatrix_sparse_FunctionValues      done in .92999999992571247E-004 cpu secs, .93366950750350952E-004 wall clock secs, .93136000032245647E-004 mpi wall secs.
TIMER: gpFull_covarianceMatrix_sparse                     done in 40.723477000000003 cpu secs, 20.425002310425043 wall clock secs, 20.425002640000002 mpi wall secs.
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   2.1 /   2.1 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
TIMER: Build linear system                                done in .82587100000000646 cpu secs, .58121769502758980 wall clock secs, .58121931999994558 mpi wall secs.
Using ScaLAPACK to solve QR
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|  21.1 /  21.1 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|  21.4 /  21.4 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   2.1 /   2.1 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|  22.0 /  22.0 s
Covariance matrix 100% |********************|  22.5 /  22.5 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|  22.6 /  22.6 s
Covariance matrix 100% |********************|   6.4 /   6.4 s
Covariance matrix 100% |********************|  22.9 /  22.9 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|  23.0 /  23.0 s
Covariance matrix 100% |********************|  23.2 /  23.2 s
Covariance matrix 100% |********************|  23.0 /  23.0 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|  23.4 /  23.4 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|  23.5 /  23.5 s
Covariance matrix 100% |********************|  23.6 /  23.6 s
Covariance matrix 100% |********************|  23.4 /  23.4 s
Covariance matrix 100% |********************|  23.7 /  23.7 s
Covariance matrix 100% |********************|  23.7 /  23.7 s
Covariance matrix 100% |********************|  23.9 /  23.9 s
Covariance matrix 100% |********************|  23.7 /  23.7 s
Covariance matrix 100% |********************|  23.9 /  23.9 s
Covariance matrix 100% |********************|  24.1 /  24.1 s
Covariance matrix 100% |********************|  24.2 /  24.2 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|  24.5 /  24.5 s
Covariance matrix 100% |********************|  24.5 /  24.5 s
Covariance matrix 100% |********************|  24.6 /  24.6 s
Covariance matrix 100% |********************|  24.5 /  24.5 s
Covariance matrix 100% |********************|  24.7 /  24.7 s
Covariance matrix 100% |********************|  24.6 /  24.6 s
Covariance matrix 100% |********************|  24.6 /  24.6 s
Covariance matrix 100% |********************|  24.9 /  24.9 s
Covariance matrix 100% |********************|  24.6 /  24.6 s
Covariance matrix 100% |********************|  25.0 /  25.0 s
Covariance matrix 100% |********************|   6.0 /   6.0 s
Covariance matrix 100% |********************|  25.0 /  25.0 s
Covariance matrix 100% |********************|  25.1 /  25.1 s
Covariance matrix 100% |********************|  24.9 /  24.9 s
Covariance matrix 100% |********************|   5.6 /   5.6 s
Covariance matrix 100% |********************|  25.2 /  25.2 s
Covariance matrix 100% |********************|  25.3 /  25.3 s
Covariance matrix 100% |********************|  25.0 /  25.0 s
Covariance matrix 100% |********************|  25.3 /  25.3 s
Covariance matrix 100% |********************|  25.4 /  25.4 s
Covariance matrix 100% |********************|  25.5 /  25.5 s
Covariance matrix 100% |********************|  25.5 /  25.5 s
Covariance matrix 100% |********************|  25.2 /  25.2 s
Covariance matrix 100% |********************|  25.5 /  25.5 s
Covariance matrix 100% |********************|  25.5 /  25.5 s
Covariance matrix 100% |********************|  25.3 /  25.3 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|  25.5 /  25.5 s
Covariance matrix 100% |********************|  25.7 /  25.7 s
Covariance matrix 100% |********************|  25.5 /  25.5 s
Covariance matrix 100% |********************|  25.7 /  25.7 s
Covariance matrix 100% |********************|  25.7 /  25.7 s
Covariance matrix 100% |********************|  25.8 /  25.8 s
Covariance matrix 100% |********************|  25.7 /  25.7 s
Covariance matrix 100% |********************|  25.8 /  25.8 s
Covariance matrix 100% |********************|  25.8 /  25.8 s
Covariance matrix 100% |********************|  25.9 /  25.9 s
Covariance matrix 100% |********************|  25.7 /  25.7 s
Covariance matrix 100% |********************|  26.0 /  26.0 s
Covariance matrix 100% |********************|  25.9 /  25.9 s
Covariance matrix 100% |********************|  26.0 /  26.0 s
Covariance matrix 100% |********************|  26.1 /  26.1 s
Covariance matrix 100% |********************|  26.1 /  26.1 s
Covariance matrix 100% |********************|  25.9 /  25.9 s
Covariance matrix 100% |********************|  26.1 /  26.1 s
Covariance matrix 100% |********************|  26.1 /  26.1 s
Covariance matrix 100% |********************|  26.2 /  26.2 s
Covariance matrix 100% |********************|  26.0 /  26.0 s
Covariance matrix 100% |********************|  26.3 /  26.3 s
Covariance matrix 100% |********************|  26.1 /  26.1 s
Covariance matrix 100% |********************|  26.4 /  26.4 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|  26.5 /  26.5 s
Covariance matrix 100% |********************|  26.7 /  26.7 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|  26.7 /  26.7 s
Covariance matrix 100% |********************|  26.7 /  26.7 s
Covariance matrix 100% |********************|  26.8 /  26.8 s
Covariance matrix 100% |********************|  27.2 /  27.2 s
Covariance matrix 100% |********************|  27.0 /  27.0 s
Covariance matrix 100% |********************|  27.3 /  27.3 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|  27.8 /  27.8 s
Covariance matrix 100% |********************|  27.8 /  27.8 s
Covariance matrix 100% |********************|  28.0 /  28.0 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|  28.1 /  28.1 s
Covariance matrix 100% |********************|  28.0 /  28.0 s
Covariance matrix 100% |********************|   7.6 /   7.6 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|  28.3 /  28.3 s
Covariance matrix 100% |********************|   6.5 /   6.5 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|  28.6 /  28.6 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   4.0 /   4.0 s
Covariance matrix 100% |********************|   4.5 /   4.5 s
Covariance matrix 100% |********************|  29.3 /  29.3 s
Covariance matrix 100% |********************|  29.4 /  29.4 s
Covariance matrix 100% |********************|   6.8 /   6.8 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   4.5 /   4.5 s
Covariance matrix 100% |********************|  29.4 /  29.4 s
Covariance matrix 100% |********************|   2.1 /   2.1 s
Covariance matrix 100% |********************|   6.6 /   6.6 s
Covariance matrix 100% |********************|   8.5 /   8.5 s
Covariance matrix 100% |********************|   6.8 /   6.8 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|  29.9 /  29.9 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   6.6 /   6.6 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|   4.9 /   4.9 s
Covariance matrix 100% |********************|   6.6 /   6.6 s
Covariance matrix 100% |********************|   8.8 /   8.8 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|   7.8 /   7.8 s
Covariance matrix 100% |********************|   4.3 /   4.3 s
Covariance matrix 100% |********************|  30.7 /  30.7 s
Covariance matrix 100% |********************|   6.9 /   6.9 s
Covariance matrix 100% |********************|   4.2 /   4.2 s
Covariance matrix 100% |********************|  31.0 /  31.0 s
Covariance matrix 100% |********************|  30.5 /  30.5 s
Covariance matrix 100% |********************|   4.3 /   4.3 s
Covariance matrix 100% |********************|  31.3 /  31.3 s
Covariance matrix 100% |********************|  30.5 /  30.5 s
Covariance matrix 100% |********************|   4.8 /   4.8 s
Covariance matrix 100% |********************|  31.7 /  31.7 s
Covariance matrix 100% |********************|   6.9 /   6.9 s
Covariance matrix 100% |********************|   8.4 /   8.4 s
Covariance matrix 100% |********************|   7.7 /   7.7 s
Covariance matrix 100% |********************|   4.8 /   4.8 s
Covariance matrix 100% |********************|   7.0 /   7.0 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|  31.3 /  31.3 s
Covariance matrix 100% |********************|  30.5 /  30.5 s
Covariance matrix 100% |********************|   2.1 /   2.1 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|  31.1 /  31.1 s
Covariance matrix 100% |********************|   2.3 /   2.3 s
Covariance matrix 100% |********************|  31.5 /  31.5 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|  32.2 /  32.2 s
Covariance matrix 100% |********************|   5.3 /   5.3 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|  32.4 /  32.4 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|   4.2 /   4.2 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   8.4 /   8.4 s
Covariance matrix 100% |********************|  32.5 /  32.5 s
Covariance matrix 100% |********************|  16.1 /  16.1 s
Covariance matrix 100% |********************|   8.2 /   8.2 s
Covariance matrix 100% |********************|  32.6 /  32.6 s
Covariance matrix 100% |********************|   2.5 /   2.5 s
Covariance matrix 100% |********************|   2.5 /   2.5 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|  32.8 /  32.8 s
Covariance matrix 100% |********************|   2.5 /   2.5 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   8.5 /   8.5 s
Covariance matrix 100% |********************|   8.1 /   8.1 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|  33.1 /  33.1 s
Covariance matrix 100% |********************|  33.1 /  33.1 s
Covariance matrix 100% |********************|  33.3 /  33.3 s
Covariance matrix 100% |********************|  33.4 /  33.4 s
Covariance matrix 100% |********************|  33.3 /  33.3 s
Covariance matrix 100% |********************|  33.2 /  33.2 s
Covariance matrix 100% |********************|  33.4 /  33.4 s
Covariance matrix 100% |********************|  33.4 /  33.4 s
Covariance matrix 100% |********************|   3.3 /   3.3 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|  33.5 /  33.5 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   8.1 /   8.1 s
Covariance matrix 100% |********************|   7.9 /   7.9 s
Covariance matrix 100% |********************|  33.5 /  33.5 s
Covariance matrix 100% |********************|   8.8 /   8.8 s
Covariance matrix 100% |********************|  33.5 /  33.5 s
Covariance matrix 100% |********************|  33.5 /  33.5 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|  33.6 /  33.6 s
Covariance matrix 100% |********************|  33.6 /  33.6 s
Covariance matrix 100% |********************|  33.6 /  33.6 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|  33.8 /  33.8 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|  33.8 /  33.8 s
Covariance matrix 100% |********************|   2.3 /   2.3 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|  33.7 /  33.7 s
Covariance matrix 100% |********************|  33.8 /  33.8 s
Covariance matrix 100% |********************|   9.2 /   9.2 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|  34.0 /  34.0 s
Covariance matrix 100% |********************|   8.4 /   8.4 s
Covariance matrix 100% |********************|  34.1 /  34.1 s
Covariance matrix 100% |********************|  34.1 /  34.1 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|  34.1 /  34.1 s
Covariance matrix 100% |********************|  34.1 /  34.1 s
Covariance matrix 100% |********************|   2.2 /   2.2 s
Covariance matrix 100% |********************|  34.4 /  34.4 s
Covariance matrix 100% |********************|  34.3 /  34.3 s
Covariance matrix 100% |********************|  34.3 /  34.3 s
Covariance matrix 100% |********************|   9.1 /   9.1 s
Covariance matrix 100% |********************|  34.3 /  34.3 s
Covariance matrix 100% |********************|  34.4 /  34.4 s
Covariance matrix 100% |********************|  34.4 /  34.4 s
Covariance matrix 100% |********************|   8.5 /   8.5 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|  34.6 /  34.6 s
Covariance matrix 100% |********************|  34.6 /  34.6 s
Covariance matrix 100% |********************|  34.6 /  34.6 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   9.2 /   9.2 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|  17.8 /  17.8 s
Covariance matrix 100% |********************|   4.5 /   4.5 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|   9.1 /   9.1 s
Covariance matrix 100% |********************|   9.4 /   9.4 s
Covariance matrix 100% |********************|   9.1 /   9.1 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|  34.9 /  34.9 s
Covariance matrix 100% |********************|   9.1 /   9.1 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|  17.6 /  17.6 s
Covariance matrix 100% |********************|   9.7 /   9.7 s
Covariance matrix 100% |********************|  35.1 /  35.1 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|  35.0 /  35.0 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|  35.1 /  35.1 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   8.9 /   8.9 s
Covariance matrix 100% |********************|   8.6 /   8.6 s
Covariance matrix 100% |********************|   2.4 /   2.4 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|  35.3 /  35.3 s
Covariance matrix 100% |********************|   2.5 /   2.5 s
Covariance matrix 100% |********************|   9.4 /   9.4 s
Covariance matrix 100% |********************|   2.5 /   2.5 s
Covariance matrix 100% |********************|   3.0 /   3.0 s
Covariance matrix 100% |********************|   9.8 /   9.8 s
Covariance matrix 100% |********************|   9.9 /   9.9 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   9.1 /   9.1 s
Covariance matrix 100% |********************|   9.6 /   9.6 s
Covariance matrix 100% |********************|  35.7 /  35.7 s
Covariance matrix 100% |********************|   9.1 /   9.1 s
Covariance matrix 100% |********************|   9.9 /   9.9 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   9.2 /   9.2 s
Covariance matrix 100% |********************|  10.4 /  10.4 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|  36.5 /  36.5 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|  36.8 /  36.8 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|  36.9 /  36.9 s
Covariance matrix 100% |********************|   2.4 /   2.4 s
Covariance matrix 100% |********************|   4.2 /   4.2 s
Covariance matrix 100% |********************|  11.1 /  11.1 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   8.8 /   8.8 s
Covariance matrix 100% |********************|   3.3 /   3.3 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   4.2 /   4.2 s
Covariance matrix 100% |********************|  10.4 /  10.4 s
Covariance matrix 100% |********************|   9.4 /   9.4 s
Covariance matrix 100% |********************|   4.5 /   4.5 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|  37.6 /  37.6 s
Covariance matrix 100% |********************|   2.5 /   2.5 s
Covariance matrix 100% |********************|   3.3 /   3.3 s
Covariance matrix 100% |********************|  37.7 /  37.7 s
Covariance matrix 100% |********************|  12.5 /  12.5 s
Covariance matrix 100% |********************|   3.0 /   3.0 s
Covariance matrix 100% |********************|  37.7 /  37.7 s
Covariance matrix 100% |********************|  12.1 /  12.1 s
Covariance matrix 100% |********************|   3.3 /   3.3 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   4.4 /   4.4 s
Covariance matrix 100% |********************|  18.8 /  18.8 s
Covariance matrix 100% |********************|   9.7 /   9.7 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|  10.4 /  10.4 s
Covariance matrix 100% |********************|  10.3 /  10.3 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   4.1 /   4.1 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|   4.1 /   4.1 s
Covariance matrix 100% |********************|  11.5 /  11.5 s
Covariance matrix 100% |********************|   3.7 /   3.7 s
Covariance matrix 100% |********************|   2.9 /   2.9 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|  11.7 /  11.7 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|   9.2 /   9.2 s
Covariance matrix 100% |********************|   2.5 /   2.5 s
Covariance matrix 100% |********************|  10.8 /  10.8 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|   2.9 /   2.9 s
Covariance matrix 100% |********************|  10.7 /  10.7 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|   7.7 /   7.7 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|  38.9 /  38.9 s
Covariance matrix 100% |********************|  12.3 /  12.3 s
Covariance matrix 100% |********************|   3.7 /   3.7 s
Covariance matrix 100% |********************|  39.0 /  39.0 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   4.0 /   4.0 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   3.8 /   3.8 s
Covariance matrix 100% |********************|   1.8 /   1.8 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|   4.5 /   4.5 s
Covariance matrix 100% |********************|  38.6 /  38.6 s
Covariance matrix 100% |********************|   1.4 /   1.4 s
Covariance matrix 100% |********************|   4.9 /   4.9 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|   4.4 /   4.4 s
Covariance matrix 100% |********************|   7.9 /   7.9 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   4.1 /   4.1 s
Covariance matrix 100% |********************|   4.4 /   4.4 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|  39.9 /  39.9 s
Covariance matrix 100% |********************|  15.6 /  15.6 s
Covariance matrix 100% |********************|  11.5 /  11.5 s
Covariance matrix 100% |********************|   4.2 /   4.2 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   6.2 /   6.2 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|  40.0 /  40.0 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   6.5 /   6.5 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   3.8 /   3.8 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|   2.4 /   2.4 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|   3.8 /   3.8 s
Covariance matrix 100% |********************|   4.3 /   4.3 s
Covariance matrix 100% |********************|   3.3 /   3.3 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|  10.3 /  10.3 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|  17.1 /  17.1 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|  11.6 /  11.6 s
Covariance matrix 100% |********************|   8.3 /   8.3 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|  11.7 /  11.7 s
Covariance matrix 100% |********************|   3.3 /   3.3 s
Covariance matrix 100% |********************|   1.0 /   1.0 s
Covariance matrix 100% |********************|  41.1 /  41.1 s
Covariance matrix 100% |********************|  10.6 /  10.6 s
Covariance matrix 100% |********************|  10.1 /  10.1 s
Covariance matrix 100% |********************|   3.8 /   3.8 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   3.8 /   3.8 s
Covariance matrix 100% |********************|   3.7 /   3.7 s
Covariance matrix 100% |********************|   4.3 /   4.3 s
Covariance matrix 100% |********************|   3.8 /   3.8 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   3.3 /   3.3 s
Covariance matrix 100% |********************|   4.1 /   4.1 s
Covariance matrix 100% |********************|   4.0 /   4.0 s
Covariance matrix 100% |********************|   2.3 /   2.3 s
Covariance matrix 100% |********************|   4.3 /   4.3 s
Covariance matrix 100% |********************|   4.8 /   4.8 s
Covariance matrix 100% |********************|   4.5 /   4.5 s
Covariance matrix 100% |********************|   4.4 /   4.4 s
Covariance matrix 100% |********************|   4.9 /   4.9 s
Covariance matrix 100% |********************|   8.4 /   8.4 s
Covariance matrix 100% |********************|   2.9 /   2.9 s
Covariance matrix 100% |********************|  12.0 /  12.0 s
Covariance matrix 100% |********************|   4.5 /   4.5 s
Covariance matrix 100% |********************|  12.6 /  12.6 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|  41.9 /  41.9 s
Covariance matrix 100% |********************|   0.9 /   0.9 s
Covariance matrix 100% |********************|   4.9 /   4.9 s
Covariance matrix 100% |********************|   2.3 /   2.3 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|  10.7 /  10.7 s
Covariance matrix 100% |********************|   3.7 /   3.7 s
Covariance matrix 100% |********************|   3.8 /   3.8 s
Covariance matrix 100% |********************|   9.3 /   9.3 s
Covariance matrix 100% |********************|  42.5 /  42.5 s
Covariance matrix 100% |********************|   4.5 /   4.5 s
Covariance matrix 100% |********************|  18.8 /  18.8 s
Covariance matrix 100% |********************|   5.1 /   5.1 s
Covariance matrix 100% |********************|   1.8 /   1.8 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   2.1 /   2.1 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   4.0 /   4.0 s
Covariance matrix 100% |********************|   5.6 /   5.6 s
Covariance matrix 100% |********************|  18.2 /  18.2 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|  18.0 /  18.0 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   5.3 /   5.3 s
Covariance matrix 100% |********************|  43.0 /  43.0 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   5.5 /   5.5 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|  17.9 /  17.9 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|  12.7 /  12.7 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|  12.2 /  12.2 s
Covariance matrix 100% |********************|   3.7 /   3.7 s
Covariance matrix 100% |********************|   4.8 /   4.8 s
Covariance matrix 100% |********************|   4.9 /   4.9 s
Covariance matrix 100% |********************|  12.8 /  12.8 s
Covariance matrix 100% |********************|  20.7 /  20.7 s
Covariance matrix 100% |********************|   2.9 /   2.9 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|   1.3 /   1.3 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   2.3 /   2.3 s
Covariance matrix 100% |********************|   3.3 /   3.3 s
Covariance matrix 100% |********************|  10.5 /  10.5 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|   3.0 /   3.0 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|  10.5 /  10.5 s
Covariance matrix 100% |********************|   1.3 /   1.3 s
Covariance matrix 100% |********************|   3.0 /   3.0 s
Covariance matrix 100% |********************|   3.3 /   3.3 s
Covariance matrix 100% |********************|   6.3 /   6.3 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   3.0 /   3.0 s
Covariance matrix 100% |********************|   2.9 /   2.9 s
Covariance matrix 100% |********************|   3.0 /   3.0 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   2.9 /   2.9 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   3.0 /   3.0 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   6.2 /   6.2 s
Covariance matrix 100% |********************|   2.4 /   2.4 s
Covariance matrix 100% |********************|   3.5 /   3.5 s
Covariance matrix 100% |********************|  12.2 /  12.2 s
Covariance matrix 100% |********************|  12.7 /  12.7 s
Covariance matrix 100% |********************|  13.3 /  13.3 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   6.4 /   6.4 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|  10.3 /  10.3 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|  45.2 /  45.2 s
Covariance matrix 100% |********************|  12.6 /  12.6 s
Covariance matrix 100% |********************|  13.0 /  13.0 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   1.7 /   1.7 s
Covariance matrix 100% |********************|  22.0 /  22.0 s
Covariance matrix 100% |********************|   2.9 /   2.9 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|  23.7 /  23.7 s
Covariance matrix 100% |********************|  45.7 /  45.7 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|  12.8 /  12.8 s
Covariance matrix 100% |********************|   1.5 /   1.5 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|  45.8 /  45.8 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|  45.8 /  45.8 s
Covariance matrix 100% |********************|   3.0 /   3.0 s
Covariance matrix 100% |********************|   3.3 /   3.3 s
Covariance matrix 100% |********************|  11.8 /  11.8 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   3.7 /   3.7 s
Covariance matrix 100% |********************|   7.4 /   7.4 s
Covariance matrix 100% |********************|  21.5 /  21.5 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|  13.0 /  13.0 s
Covariance matrix 100% |********************|   0.1 /   0.1 s
Covariance matrix 100% |********************|   6.2 /   6.2 s
Covariance matrix 100% |********************|  13.1 /  13.1 s
Covariance matrix 100% |********************|   4.3 /   4.3 s
Covariance matrix 100% |********************|  46.4 /  46.4 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   4.3 /   4.3 s
Covariance matrix 100% |********************|  46.4 /  46.4 s
Covariance matrix 100% |********************|   7.8 /   7.8 s
Covariance matrix 100% |********************|   1.8 /   1.8 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|  13.3 /  13.3 s
Covariance matrix 100% |********************|   5.1 /   5.1 s
Covariance matrix 100% |********************|  13.6 /  13.6 s
Covariance matrix 100% |********************|  12.7 /  12.7 s
Covariance matrix 100% |********************|  12.7 /  12.7 s
Covariance matrix 100% |********************|  13.6 /  13.6 s
Covariance matrix 100% |********************|   5.2 /   5.2 s
Covariance matrix 100% |********************|   2.8 /   2.8 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   5.9 /   5.9 s
Covariance matrix 100% |********************|   6.7 /   6.7 s
Covariance matrix 100% |********************|   2.8 /   2.8 s
Covariance matrix 100% |********************|   6.0 /   6.0 s
Covariance matrix 100% |********************|  12.9 /  12.9 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|  14.0 /  14.0 s
Covariance matrix 100% |********************|   4.2 /   4.2 s
Covariance matrix 100% |********************|  14.1 /  14.1 s
Covariance matrix 100% |********************|   1.5 /   1.5 s
Covariance matrix 100% |********************|   1.8 /   1.8 s
Covariance matrix 100% |********************|  14.3 /  14.3 s
Covariance matrix 100% |********************|  13.6 /  13.6 s
Covariance matrix 100% |********************|   4.4 /   4.4 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|  13.4 /  13.4 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|  13.8 /  13.8 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   6.8 /   6.8 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|  48.3 /  48.3 s
Covariance matrix 100% |********************|   8.3 /   8.3 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|  48.4 /  48.4 s
Covariance matrix 100% |********************|  14.1 /  14.1 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|  48.8 /  48.8 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|   1.5 /   1.5 s
Covariance matrix 100% |********************|   4.0 /   4.0 s
Covariance matrix 100% |********************|   1.7 /   1.7 s
Covariance matrix 100% |********************|   4.0 /   4.0 s
Covariance matrix 100% |********************|   5.3 /   5.3 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|   5.1 /   5.1 s
Covariance matrix 100% |********************|  49.5 /  49.5 s
Covariance matrix 100% |********************|   6.5 /   6.5 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|   3.7 /   3.7 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|   2.8 /   2.8 s
Covariance matrix 100% |********************|   2.2 /   2.2 s
Covariance matrix 100% |********************|   7.0 /   7.0 s
Covariance matrix 100% |********************|   5.3 /   5.3 s
Covariance matrix 100% |********************|   3.8 /   3.8 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|   6.1 /   6.1 s
Covariance matrix 100% |********************|   4.9 /   4.9 s
Covariance matrix 100% |********************|   3.7 /   3.7 s
Covariance matrix 100% |********************|   6.4 /   6.4 s
Covariance matrix 100% |********************|  16.0 /  16.0 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|   4.1 /   4.1 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   4.9 /   4.9 s
Covariance matrix 100% |********************|   2.4 /   2.4 s
Covariance matrix 100% |********************|   5.2 /   5.2 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|   6.7 /   6.7 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|   4.8 /   4.8 s
Covariance matrix 100% |********************|   5.2 /   5.2 s
Covariance matrix 100% |********************|   4.7 /   4.7 s
Covariance matrix 100% |********************|   5.4 /   5.4 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   5.1 /   5.1 s
Covariance matrix 100% |********************|   5.1 /   5.1 s
Covariance matrix 100% |********************|   2.1 /   2.1 s
Covariance matrix 100% |********************|   5.4 /   5.4 s
Covariance matrix 100% |********************|   5.3 /   5.3 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|   3.9 /   3.9 s
Covariance matrix 100% |********************|   5.3 /   5.3 s
Covariance matrix 100% |********************|   5.4 /   5.4 s
Covariance matrix 100% |********************|   7.0 /   7.0 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   4.5 /   4.5 s
Covariance matrix 100% |********************|   5.4 /   5.4 s
Covariance matrix 100% |********************|   3.7 /   3.7 s
Covariance matrix 100% |********************|   4.5 /   4.5 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|   7.8 /   7.8 s
Covariance matrix 100% |********************|   3.1 /   3.1 s
Covariance matrix 100% |********************|  16.8 /  16.8 s
Covariance matrix 100% |********************|   1.5 /   1.5 s
Covariance matrix 100% |********************|   5.4 /   5.4 s
Covariance matrix 100% |********************|   1.5 /   1.5 s
Covariance matrix 100% |********************|  12.8 /  12.8 s
Covariance matrix 100% |********************|   7.4 /   7.4 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|   7.8 /   7.8 s
Covariance matrix 100% |********************|  15.0 /  15.0 s
Covariance matrix 100% |********************|   2.1 /   2.1 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|   2.6 /   2.6 s
Covariance matrix 100% |********************|   6.5 /   6.5 s
Covariance matrix 100% |********************|   2.7 /   2.7 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   3.8 /   3.8 s
Covariance matrix 100% |********************|   2.1 /   2.1 s
Covariance matrix 100% |********************|   3.4 /   3.4 s
Covariance matrix 100% |********************|   2.2 /   2.2 s
Covariance matrix 100% |********************|   4.2 /   4.2 s
Covariance matrix 100% |********************|   1.8 /   1.8 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|   2.2 /   2.2 s
Covariance matrix 100% |********************|   3.2 /   3.2 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   2.1 /   2.1 s
Covariance matrix 100% |********************|   5.9 /   5.9 s
Covariance matrix 100% |********************|  10.8 /  10.8 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|  14.8 /  14.8 s
Covariance matrix 100% |********************|   3.6 /   3.6 s
Covariance matrix 100% |********************|   4.6 /   4.6 s
Covariance matrix 100% |********************|   1.5 /   1.5 s
Covariance matrix 100% |********************|   2.2 /   2.2 s
Covariance matrix 100% |********************|   4.3 /   4.3 s
Covariance matrix 100% |********************|   3.7 /   3.7 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|   1.7 /   1.7 s
Covariance matrix 100% |********************|   2.0 /   2.0 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   4.0 /   4.0 s
Covariance matrix 100% |********************|   4.8 /   4.8 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   1.7 /   1.7 s
Covariance matrix 100% |********************|   1.7 /   1.7 s
Covariance matrix 100% |********************|   1.5 /   1.5 s
Covariance matrix 100% |********************|  12.5 /  12.5 s
Covariance matrix 100% |********************|   1.9 /   1.9 s
Covariance matrix 100% |********************|   1.6 /   1.6 s
Covariance matrix 100% |********************|   1.7 /   1.7 s
Covariance matrix 100% |********************|   1.7 /   1.7 s
Covariance matrix 100% |********************|   1.7 /   1.7 s

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGABRT: Process abort signal.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:
#0  0x15288caa7d4f in ???
#1  0x15288caa7cbb in ???
#2  0x15288caa9354 in ???
#3  0x15288caedae6 in ???
#4  0xffffffffffffffff in ???
#0  0x1480ceb0cd4f in ???
#0  0x14ee75f4bd4f in ???

@albapa
Copy link
Member

albapa commented Jan 8, 2025

Sorry, I meant the bits after the hello world when it collects the number of descriptors etc.

@Ash-Dickson
Copy link
Author

Oh sorry. Here's the first bit:

Calls to system_timer will do nothing by default

MPI hostnames :: nid005254 nid005256 nid005287
MPI host refs :: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MPI my_host  : 0
MPI hostname : nid005254

================================ Input parameters ==============================

config_file =
atoms_filename = database.xyz
at_file = //MANDATORY//
gap = "{distance_2b add_species = F Z1 = 29 Z2 = 29 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}:{distance_2b add_species = F Z1 = 29 Z2 = 8 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}:{distance_2b add_species = F Z1 = 29 Z2 = 39 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}:{distance_2b add_species = F Z1 = 29 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}:{distance_2b add_species = F Z1 = 8 Z2 = 8 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}:{distance_2b add_species = F Z1 = 8 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}:{distance_2b add_species = F Z1 = 8 Z2 = 39 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}:{distance_2b add_species = F Z1 = 39 Z2 = 39 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}:{distance_2b add_species = F Z1 = 39 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}:{distance_2b add_species = F Z1 = 56 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}:{soap add_species = F Z = 8 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points}:{soap add_species = F Z = 29 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points}:{soap add_species = F Z = 39 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points}:{soap add_species = F Z = 39 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points}"
e0 = Ba:-692.188:O:-430.076:Y:-1038.578:Cu:-1305.806
local_property0 = 0.0
e0_offset = 0.0
e0_method = isolated
default_kernel_regularisation = //MANDATORY//
default_sigma = "0.002 0.02 0.02 0.0"
default_kernel_regularisation_local_property = 0.001
default_local_property_sigma = 0.001
sparse_jitter = 1e-8
hessian_displacement = 1.0e-2
hessian_delta = 1.0e-2
baseline_param_filename = quip_params.xml
core_param_file = pairpot.xml
baseline_ip_args =
core_ip_args = "IP Glue"
energy_parameter_name = dft_energy
local_property_parameter_name = local_property
force_parameter_name = dft_force
virial_parameter_name = virial
stress_parameter_name = stress
hessian_parameter_name = hessian
config_type_parameter_name = config_type
kernel_regularisation_parameter_name = sigma
sigma_parameter_name = sigma
force_mask_parameter_name = force_mask
local_property_mask_parameter_name = local_property_mask
parameter_name_prefix =
config_type_kernel_regularisation =
config_type_sigma = YBCO7:0.002:0.02:0.02:0.0:YBCO6:0.005:0.05:0.05:0.0:Y2O3:0.005:0.05:0.05:0.0:BaO:0.005:0.05:0.05:0.0:Cu2O:0.005:0.05:0.05:0.0:O2:0.005:0.05:0.05:0.0
kernel_regularisation_is_per_atom = T
sigma_per_atom = T
do_copy_atoms_file = T
do_copy_at_file = T
sparse_separate_file = T
sparse_use_actual_gpcov = F
gap_file = gap_new.xml
gp_file = gp1.xml
verbosity = NORMAL
rnd_seed = -1
openmp_chunk_size = 0
do_ip_timing = F
template_file = template.xyz
sparsify_only_no_fit = F
dryrun = F
condition_number_norm =
linear_system_dump_file =
mpi_blocksize_rows = 0
mpi_blocksize_cols = 100
mpi_print_all = F
export_covariance = F

========================================  ======================================


============== Gaussian Approximation Potentials - Database fitting ============


Initial parsing of command line arguments finished.
Found 14 GAPs.
Descriptors have been parsed
XYZ file read
Unchanged GAP: {distance_2b add_species = F Z1 = 29 Z2 = 29 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}
Unchanged GAP: {distance_2b add_species = F Z1 = 29 Z2 = 8 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}
Unchanged GAP: {distance_2b add_species = F Z1 = 29 Z2 = 39 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}
Unchanged GAP: {distance_2b add_species = F Z1 = 29 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}
Unchanged GAP: {distance_2b add_species = F Z1 = 8 Z2 = 8 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}
Unchanged GAP: {distance_2b add_species = F Z1 = 8 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}
Unchanged GAP: {distance_2b add_species = F Z1 = 8 Z2 = 39 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}
Unchanged GAP: {distance_2b add_species = F Z1 = 39 Z2 = 39 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}
Unchanged GAP: {distance_2b add_species = F Z1 = 39 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}
Unchanged GAP: {distance_2b add_species = F Z1 = 56 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0}
Unchanged GAP: {soap add_species = F Z = 8 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points}
Unchanged GAP: {soap add_species = F Z = 29 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points}
Unchanged GAP: {soap add_species = F Z = 39 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points}
Unchanged GAP: {soap add_species = F Z = 39 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points}
Sparse points and target errors per pre-defined types of configurations
YBCO7    0.20000000000000000E-002  0.20000000000000000E-001  0.20000000000000000E-001  0.00000000000000000E+000
YBCO6    0.50000000000000001E-002  0.50000000000000003E-001  0.50000000000000003E-001  0.00000000000000000E+000
Y2O3    0.50000000000000001E-002  0.50000000000000003E-001  0.50000000000000003E-001  0.00000000000000000E+000
BaO    0.50000000000000001E-002  0.50000000000000003E-001  0.50000000000000003E-001  0.00000000000000000E+000
Cu2O    0.50000000000000001E-002  0.50000000000000003E-001  0.50000000000000003E-001  0.00000000000000000E+000
O2    0.50000000000000001E-002  0.50000000000000003E-001  0.50000000000000003E-001  0.00000000000000000E+000
default    0.20000000000000000E-002  0.20000000000000000E-001  0.20000000000000000E-001  0.00000000000000000E+000
Multispecies support added where requested

===================== Report on number of descriptors found ====================

---------------------------------------------------------------------
Descriptor 1: distance_2b add_species = F Z1 = 29 Z2 = 29 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0
Number of descriptors:                        576962
Number of partial derivatives of descriptors: 3461772
---------------------------------------------------------------------
Descriptor 2: distance_2b add_species = F Z1 = 29 Z2 = 8 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0
Number of descriptors:                        1628126
Number of partial derivatives of descriptors: 9768756
---------------------------------------------------------------------
Descriptor 3: distance_2b add_species = F Z1 = 29 Z2 = 39 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0
Number of descriptors:                        286350
Number of partial derivatives of descriptors: 1718100
---------------------------------------------------------------------
Descriptor 4: distance_2b add_species = F Z1 = 29 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0
Number of descriptors:                        528444
Number of partial derivatives of descriptors: 3170664
---------------------------------------------------------------------
Descriptor 5: distance_2b add_species = F Z1 = 8 Z2 = 8 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0
Number of descriptors:                        2553794
Number of partial derivatives of descriptors: 15322764
---------------------------------------------------------------------
Descriptor 6: distance_2b add_species = F Z1 = 8 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0
Number of descriptors:                        1223026
Number of partial derivatives of descriptors: 7338156
---------------------------------------------------------------------
Descriptor 7: distance_2b add_species = F Z1 = 8 Z2 = 39 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0
Number of descriptors:                        761104
Number of partial derivatives of descriptors: 4566624
---------------------------------------------------------------------
Descriptor 8: distance_2b add_species = F Z1 = 39 Z2 = 39 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0
Number of descriptors:                        149132
Number of partial derivatives of descriptors: 894792
---------------------------------------------------------------------
Descriptor 9: distance_2b add_species = F Z1 = 39 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0
Number of descriptors:                        56664
Number of partial derivatives of descriptors: 339984
---------------------------------------------------------------------
Descriptor 10: distance_2b add_species = F Z1 = 56 Z2 = 56 cutoff = 5.0 cutoff_transition_width = 1.0 delta = 2.0 n_sparse = 20 sparse_method = uniform covariance_type = ARD_SE theta_uniform = 1.0
Number of descriptors:                        268810
Number of partial derivatives of descriptors: 1612860
---------------------------------------------------------------------
Descriptor 11: soap add_species = F Z = 8 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points
Number of descriptors:                        222300
Number of partial derivatives of descriptors: 7161963
---------------------------------------------------------------------
Descriptor 12: soap add_species = F Z = 29 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points
Number of descriptors:                        79000
Number of partial derivatives of descriptors: 2670369
---------------------------------------------------------------------
Descriptor 13: soap add_species = F Z = 39 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points
Number of descriptors:                        30800
Number of partial derivatives of descriptors: 1162554
---------------------------------------------------------------------
Descriptor 14: soap add_species = F Z = 39 l_max = 4 n_max = 4 cutoff = 4 cutoff_transition_width = 0.5 atom_sigma = 0.5 n_sparse = 300 zeta = 4 delta = 0.2 covariance_type = dot_product n_species = 4 species_Z = {8 29 39 56} sparse_method = cur_points
Number of descriptors:                        30800
Number of partial derivatives of descriptors: 1162554

========================================  ======================================


========================= Memory Estimate (per process) ========================

Descriptors
Descriptor 1 :: x 1 4308 memory 34 KB
Descriptor 1 :: xPrime 1 25848 memory 206 KB
Descriptor 2 :: x 1 30468 memory 243 KB
Descriptor 2 :: xPrime 1 182808 memory 1462 KB
Descriptor 3 :: x 1 4608 memory 36 KB
Descriptor 3 :: xPrime 1 27648 memory 221 KB
Descriptor 4 :: x 1 8064 memory 64 KB
Descriptor 4 :: xPrime 1 48384 memory 387 KB
Descriptor 5 :: x 1 34662 memory 277 KB
Descriptor 5 :: xPrime 1 207972 memory 1663 KB
Descriptor 6 :: x 1 25172 memory 201 KB
Descriptor 6 :: xPrime 1 151032 memory 1208 KB
Descriptor 7 :: x 1 17528 memory 140 KB
Descriptor 7 :: xPrime 1 105168 memory 841 KB
Descriptor 8 :: x 1 2442 memory 19 KB
Descriptor 8 :: xPrime 1 14652 memory 117 KB
Descriptor 9 :: x 1 898 memory 7184  B
Descriptor 9 :: xPrime 1 5388 memory 43 KB
Descriptor 10 :: x 1 2166 memory 17 KB
Descriptor 10 :: xPrime 1 12996 memory 103 KB
Descriptor 11 :: x 681 2828 memory 15 MB
Descriptor 11 :: xPrime 681 105060 memory 572 MB
Descriptor 12 :: x 681 864 memory 4707 KB
Descriptor 12 :: xPrime 681 41877 memory 228 MB
Descriptor 13 :: x 681 544 memory 2963 KB
Descriptor 13 :: xPrime 681 21480 memory 117 MB
Descriptor 14 :: x 681 544 memory 2963 KB
Descriptor 14 :: xPrime 681 21480 memory 117 MB
Subtotal 1067 MB

Covariances
yY 1400 15942 memory 178 MB * 2
yy 1400 1400 memory 15 MB
A 1400 17342 memory 194 MB * 2
Subtotal 761 MB

Peak1 1246 MB
Peak2 761 MB
PEAK  1246 MB

Free system memory  237 GB
Total system memory 269 GB

========================================  ======================================


========== Report on number of target properties found in training XYZ: ========

Number of target energies (property name: dft_energy) found: 450
Number of target local_properties (property name: local_property) found: 0
Number of target forces (property name: dft_force) found: 1179300
Number of target virials (property name: virial) found: 0
Number of target Hessian eigenvalues (property name: hessian) found: 0

================================= End of report ================================


===== Report on per-configuration/per-atom sigma (error parameter) settings ====

Number of per-configuration setting of energy_sigma found:     0
Number of per-configuration setting of force_sigma found:      0
Number of per-configuration setting of virial_sigma found:     0
Number of per-configuration setting of hessian_sigma found:    0
Number of per-configuration setting of local_propery_sigma found:0
Number of per-atom setting of force_atom_sigma found:          0
Number of per-component setting of force_component_sigma found:          0
Number of per-component setting of virial_component_sigma found:          0

================================= End of report ================================

@albapa
Copy link
Member

albapa commented Jan 8, 2025

All I can think based on this is that there is an additional chunk which is not accounted for becomes significant. Interesting would be to either try to run the same fit with e.g. half the database or use more nodes (while use more openmp threads as well). I know this not super useful.

@Ash-Dickson
Copy link
Author

I've just tried running with just the 2b descriptor and it works fine. Increasing the nodes and changing the database size didn't seem to help unfortunately. I guess I'll have to trial and error to see whats going wrong. Thanks for the help, please let me know if you have any other suggestions.

@Ash-Dickson
Copy link
Author

Also does the fact that the displayed available memory isn't consistent with the actual amount I am using indicate an error with the compilation? Or does GAP not show the TOTAL amount of memory from all nodes?

@albapa
Copy link
Member

albapa commented Jan 8, 2025

Also does the fact that the displayed available memory isn't consistent with the actual amount I am using indicate an error with the compilation? Or does GAP not show the TOTAL amount of memory from all nodes?

No, this simply reports the memory on the root node. I agree that the text is somewhat misleading.

@albapa
Copy link
Member

albapa commented Jan 8, 2025

What is the distribution of the sizes (number of atoms) of your configurations?

@Ash-Dickson
Copy link
Author

Each configuration has ca. 800 atoms. I'm guessing that I need to reduced the number of OMP threads to accommodate for this?

@albapa
Copy link
Member

albapa commented Jan 8, 2025

Each configuration has ca. 800 atoms.

I was worried if the distribution is very uneven, in which case the task manager might run into problems.

I'm guessing that I need to reduced the number of OMP threads to accommodate for this?

No, in fact, you can use a higher value. Both the descriptor and covariance calculations can make use of that. There is no hard rule on how high, see the paper for our findings.

@Ash-Dickson
Copy link
Author

Okay, I will give a try with more threads.

@jesperbygg
Copy link

Any luck with solving this @Ash-Dickson ?

I think I might have the same issue. I also get segfault at a similar place. I have many elements and a LOT of descriptors (459 to be exact, mostly angle_3b) in my training, which may or may not be related to the problem. I found that everything works fine until I reach a total number of sparse points of somewhere around 46k (summing up all descriptors). I can use any combination of n_sparse for the different descriptors as long as the sum is less than that, otherwise it segfaults. I also tried different ratios of MPI to OpenMP threads with no difference. @Ash-Dickson, I see you use very few n_sparse points so I'm not 100% sure our issues are related, but can you try reducing them to see if the problem disappears?

Here is my backtrace, any clues from this @albapa ?

BFD: Dwarf Error: Can't find .debug_ranges section.
BFD: Dwarf Error: Can't find .debug_ranges section.
BFD: Dwarf Error: Can't find .debug_ranges section.
BFD: Dwarf Error: Can't find .debug_ranges section.
BFD: Dwarf Error: Can't find .debug_ranges section.
BFD: Dwarf Error: Can't find .debug_ranges section.
BFD: Dwarf Error: Can't find .debug_ranges section.
BFD: Dwarf Error: Can't find .debug_ranges section.
==== backtrace (tid:3976581) ====
 0 0x0000000000012d10 __funlockfile()  :0
 1 0x00000000000a7a27 __memmove_avx_unaligned_erms()  :0
 2 0x000000000004aa84 ucp_dt_pack()  /appl/opt/ucx/build/ucx-1.12.0/src/ucp/dt/dt.c:120
 3 0x000000000007edc8 ucp_rndv_pack_data()  /appl/opt/ucx/build/ucx-1.12.0/src/ucp/rndv/rndv.c:1628
 4 0x00000000000529d7 uct_dc_mlx5_ep_am_bcopy()  /appl/opt/ucx/build/ucx-1.12.0/src/uct/ib/dc/dc_mlx5_ep.c:376
 5 0x00000000000529d7 uct_dc_mlx5_iface_bcopy_post()  /appl/opt/ucx/build/ucx-1.12.0/src/uct/ib/dc/dc_mlx5_ep.c:33
 6 0x00000000000529d7 uct_dc_mlx5_ep_am_bcopy()  /appl/opt/ucx/build/ucx-1.12.0/src/uct/ib/dc/dc_mlx5_ep.c:380
 7 0x000000000007ef70 uct_ep_am_bcopy()  /appl/opt/ucx/build/ucx-1.12.0/src/uct/api/uct.h:2841
 8 0x000000000007ef70 ucp_do_am_bcopy_multi()  /appl/opt/ucx/build/ucx-1.12.0/src/ucp/proto/proto_am.inl:86
 9 0x000000000007ef70 ucp_rndv_progress_am_bcopy()  /appl/opt/ucx/build/ucx-1.12.0/src/ucp/rndv/rndv.c:1648
10 0x0000000000083171 ucp_request_try_send()  /appl/opt/ucx/build/ucx-1.12.0/src/ucp/core/ucp_request.inl:334
11 0x0000000000083171 ucp_request_send()  /appl/opt/ucx/build/ucx-1.12.0/src/ucp/core/ucp_request.inl:357
12 0x0000000000083171 ucp_rndv_rtr_handler()  /appl/opt/ucx/build/ucx-1.12.0/src/ucp/rndv/rndv.c:2090
13 0x0000000000065732 uct_iface_invoke_am()  /appl/opt/ucx/build/ucx-1.12.0/src/uct/base/uct_iface.h:773
14 0x0000000000065732 uct_rc_mlx5_iface_common_am_handler()  /appl/opt/ucx/build/ucx-1.12.0/src/uct/ib/rc/accel/rc_mlx5.inl:422
15 0x0000000000065732 uct_rc_mlx5_iface_common_poll_rx()  /appl/opt/ucx/build/ucx-1.12.0/src/uct/ib/rc/accel/rc_mlx5.inl:1455
16 0x0000000000065732 uct_dc_mlx5_iface_progress()  /appl/opt/ucx/build/ucx-1.12.0/src/uct/ib/dc/dc_mlx5.c:270
17 0x0000000000065732 uct_dc_mlx5_iface_progress_ll()  /appl/opt/ucx/build/ucx-1.12.0/src/uct/ib/dc/dc_mlx5.c:285
18 0x000000000004598a ucs_callbackq_dispatch()  /appl/opt/ucx/build/ucx-1.12.0/src/ucs/datastruct/callbackq.h:211
19 0x000000000004598a uct_worker_progress()  /appl/opt/ucx/build/ucx-1.12.0/src/uct/api/uct.h:2589
20 0x000000000004598a ucp_worker_progress()  /appl/opt/ucx/build/ucx-1.12.0/src/ucp/core/ucp_worker.c:2629
21 0x0000000000006b5e mca_pml_ucx_send()  ???:0
22 0x000000000000fce5 mca_coll_basic_scatterv_intra()  ???:0
23 0x000000000007c8d2 PMPI_Scatterv()  ???:0
24 0x00000000000594dc PMPI_SCATTERV()  ???:0
25 0x0000000000f60343 __mpi_context_module_MOD_mpi_context_scatterv_real2()  /users/jbyggmas/QUIP/src/libAtoms/MPI_context.f95:1650
26 0x0000000000e44f0a __gp_predict_module_MOD_scatter_shared_task()  /users/jbyggmas/QUIP/src/GAP/gp_predict.f95:983
27 0x0000000000e47708 __gp_predict_module_MOD_gpsparse_fit()  /users/jbyggmas/QUIP/src/GAP/gp_predict.f95:849
28 0x0000000000407f72 MAIN__()  /users/jbyggmas/QUIP/src/GAP/gap_fit.f95:106
29 0x0000000000408017 main()  /users/jbyggmas/QUIP/src/GAP/gap_fit.f95:38
30 0x000000000003a7e5 __libc_start_main()  ???:0
31 0x000000000040718e _start()  ???:0
=================================

Program received signal SIGSEGV: Segmentation fault - invalid memory reference.

Backtrace for this error:
#0  0x7fffbe7887a2 in ???
#1  0x7fffbe787975 in ???
#2  0x7fffbe12bd0f in ???
#3  0x7fffbddeaa27 in ???
#4  0x7ffef8da3a83 in ucp_dt_pack
	at dt/dt.c:120
#5  0x7ffef8dd7dc7 in ucp_rndv_pack_data
	at rndv/rndv.c:1628
#6  0x7ffef82c49d6 in uct_dc_mlx5_ep_am_bcopy
	at dc/dc_mlx5_ep.c:376
#7  0x7ffef8dd7f6f in uct_ep_am_bcopy
	at /appl/opt/ucx/build/ucx-1.12.0/src/uct/api/uct.h:2841
#8  0x7ffef8dd7f6f in ucp_do_am_bcopy_multi
	at /appl/opt/ucx/build/ucx-1.12.0/src/ucp/proto/proto_am.inl:86
#9  0x7ffef8dd7f6f in ucp_rndv_progress_am_bcopy
	at rndv/rndv.c:1648
#10  0x7ffef8ddc170 in ucp_request_try_send
	at /appl/opt/ucx/build/ucx-1.12.0/src/ucp/core/ucp_request.inl:334
#11  0x7ffef8ddc170 in ucp_request_send
	at /appl/opt/ucx/build/ucx-1.12.0/src/ucp/core/ucp_request.inl:357
#12  0x7ffef8ddc170 in ucp_rndv_rtr_handler
	at rndv/rndv.c:2090
#13  0x7ffef82d7731 in uct_iface_invoke_am
	at /appl/opt/ucx/build/ucx-1.12.0/src/uct/base/uct_iface.h:773
#14  0x7ffef82d7731 in uct_rc_mlx5_iface_common_am_handler
	at /appl/opt/ucx/build/ucx-1.12.0/src/uct/ib/rc/accel/rc_mlx5.inl:422
#15  0x7ffef82d7731 in uct_rc_mlx5_iface_common_poll_rx
	at /appl/opt/ucx/build/ucx-1.12.0/src/uct/ib/rc/accel/rc_mlx5.inl:1455
#16  0x7ffef82d7731 in uct_dc_mlx5_iface_progress
	at dc/dc_mlx5.c:270
#17  0x7ffef82d7731 in uct_dc_mlx5_iface_progress_ll
	at dc/dc_mlx5.c:285
#18  0x7ffef8d9e989 in ucs_callbackq_dispatch
	at /appl/opt/ucx/build/ucx-1.12.0/src/ucs/datastruct/callbackq.h:211
#19  0x7ffef8d9e989 in uct_worker_progress
	at /appl/opt/ucx/build/ucx-1.12.0/src/uct/api/uct.h:2589
#20  0x7ffef8d9e989 in ucp_worker_progress
	at core/ucp_worker.c:2629
#21  0x7ffef9078b5d in mca_pml_ucx_send_nbr
	at /local_scratch/build/spack-stage/ilvonens/spack-stage-openmpi-4.1.2-h6c3zeoxl6nbh64dge2ffrfhd4xk2s3b/spack-src/ompi/mca/pml/ucx/pml_ucx.c:923
#22  0x7ffef9078b5d in mca_pml_ucx_send
	at /local_scratch/build/spack-stage/ilvonens/spack-stage-openmpi-4.1.2-h6c3zeoxl6nbh64dge2ffrfhd4xk2s3b/spack-src/ompi/mca/pml/ucx/pml_ucx.c:944
#23  0x7ffef34ebce4 in mca_coll_basic_scatterv_intra
	at /local_scratch/build/spack-stage/ilvonens/spack-stage-openmpi-4.1.2-h6c3zeoxl6nbh64dge2ffrfhd4xk2s3b/spack-src/ompi/mca/coll/basic/coll_basic_scatterv.c:91
#24  0x7fffbfd958d1 in PMPI_Scatterv
	at /local_scratch/build/spack-stage/ilvonens/spack-stage-openmpi-4.1.2-h6c3zeoxl6nbh64dge2ffrfhd4xk2s3b/spack-src/ompi/mpi/c/profile/pscatterv.c:196
#25  0x7fffbfe994db in ompi_scatterv_f
	at /local_scratch/build/spack-stage/ilvonens/spack-stage-openmpi-4.1.2-h6c3zeoxl6nbh64dge2ffrfhd4xk2s3b/spack-src/ompi/mpi/fortran/mpif-h/profile/pscatterv_f.c:94
#26  0xf60342 in __mpi_context_module_MOD_mpi_context_scatterv_real2
	at /users/jbyggmas/QUIP/src/libAtoms/MPI_context.f95:1650
#27  0xe44f09 in scatter_shared_task
	at /users/jbyggmas/QUIP/src/GAP/gp_predict.f95:983
#28  0xe47707 in __gp_predict_module_MOD_gpsparse_fit
	at /users/jbyggmas/QUIP/src/GAP/gp_predict.f95:849
#29  0x407f71 in gap_fit_program
	at /users/jbyggmas/QUIP/src/GAP/gap_fit.f95:106
#30  0x408016 in main
	at /users/jbyggmas/QUIP/src/GAP/gap_fit.f95:38
srun: error: c2224: task 0: Segmentation fault```

@Ash-Dickson
Copy link
Author

Hi @jesperbygg , I believe the issue for me was OMP_STACKSIZE being too low. I increased this and have since had no issues with my training (although as you say I am using considerably less descriptors and sparse points). I have found that I still run into segfault issues for larger amounts of training data, but increasing the number of nodes I'm using seems to sort this.

I also found that using a fairly large number of OMP thread helped combat these issues. I'm sorry this isn't particularly helpful, best of luck with finding a solution!

@jesperbygg
Copy link

No that is very helpful, @Ash-Dickson, thank you very much. I will do some testing.

@albapa
Copy link
Member

albapa commented Jan 22, 2025

Thanks to both of you for these messages. The stack trace is super useful, I will have a look. Also I didn't realise OMP_STACKSIZE would affect the training process, thanks for this insight.

@albapa
Copy link
Member

albapa commented Jan 23, 2025

@jesperbygg I am wondering if you could add a print statement before the current line 983 in src/GAP/gp_predict.f95 to see how large factor_c_subYsubY and tmp are (or if there is another way to deduce their sizes). I'd be curious to see what works and what doesn't. If it is an expensive calculation which you wouldn't do otherwise, please don't worry about it. Thanks.

@jesperbygg
Copy link

Thanks for the suggestion, @albapa. Indeed, the problem is that the factor_c_subYsubY array is too large, the size was negative implying integer overflow. I now also realise why the critical combined number of nsparse points is around 46k, because the array is factor_c_subYsubY(n_globalSparseX,n_globalSparseX) so if a 32-bit integer defines the maximum array size, n_globalSparseX cannot be larger than sqrt(2**31) ~= 46340.

Now I need to figure out how to let the allocatable array size be defined by larger integers. Any tips are welcome. I don't think declaring n_globalSparseX as a larger integer works, since n_globalSparseX itself is not a problem only the length of the 2D array (n_globalSparseX, n_globalSparseX)?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants