-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_DQN2.py
216 lines (171 loc) · 7.55 KB
/
train_DQN2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import json
import numpy as np
import random
import time
import sys
import gymnasium as gym
import gym_examples
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__))))
from collections import deque
# from std_msgs.msg import Float32MultiArray
# from src.turtlebot3_dqn.environment_stage_1 import Env
from keras.models import Sequential, load_model
from tensorflow.keras.optimizers import RMSprop
from keras.layers import Dense, Dropout, Activation
EPISODES = 20000
class ReinforceAgent():
def __init__(self, state_size, action_size):
# self.pub_result = rospy.Publisher('result', Float32MultiArray, queue_size=5)
self.dirPath = os.path.dirname(os.path.realpath(__file__))
self.dirPath = self.dirPath.replace('RL-Project', 'RL-Project/gym_examples/dqn2_models/models')
# self.result = Float32MultiArray()
self.load_model = True
self.load_episode = 150
self.state_size = state_size
self.action_size = action_size
self.episode_step = 6000
self.target_update = 2000
self.discount_factor = 0.99
self.learning_rate = 0.00025
self.epsilon = 1.0
self.epsilon_decay = 0.999
self.epsilon_min = 0.05
self.batch_size = 64
self.train_start = 10000
self.memory = deque(maxlen=1000000)
self.model = self.buildModel()
self.target_model = self.buildModel()
self.updateTargetModel()
if self.load_model:
self.model.set_weights(load_model(self.dirPath+str(self.load_episode)+".h5").get_weights())
with open(self.dirPath+str(self.load_episode)+'.json') as outfile:
param = json.load(outfile)
self.epsilon = param.get('epsilon')
def buildModel(self):
model = Sequential()
dropout = 0.2
model.add(Dense(64, input_shape=(self.state_size,), activation='relu', kernel_initializer='lecun_uniform'))
model.add(Dense(64, activation='relu', kernel_initializer='lecun_uniform'))
model.add(Dropout(dropout))
model.add(Dense(self.action_size, kernel_initializer='lecun_uniform'))
model.add(Activation('linear'))
model.compile(loss='mse', optimizer=RMSprop(lr=self.learning_rate, rho=0.9, epsilon=1e-06))
model.summary()
return model
def getQvalue(self, reward, next_target, done):
if done:
return reward
else:
return reward + self.discount_factor * np.amax(next_target)
def updateTargetModel(self):
self.target_model.set_weights(self.model.get_weights())
def getAction(self, state):
if np.random.rand() <= self.epsilon:
self.q_value = np.zeros(self.action_size)
return random.randrange(self.action_size)
else:
q_value = self.model.predict(state.reshape(1, len(state)))
self.q_value = q_value
return np.argmax(q_value[0])
def appendMemory(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def trainModel(self, target=False):
mini_batch = random.sample(self.memory, self.batch_size)
X_batch = np.empty((0, self.state_size), dtype=np.float64)
Y_batch = np.empty((0, self.action_size), dtype=np.float64)
for i in range(self.batch_size):
states = mini_batch[i][0]
actions = mini_batch[i][1]
rewards = mini_batch[i][2]
next_states = mini_batch[i][3]
dones = mini_batch[i][4]
q_value = self.model.predict(states.reshape(1, len(states)))
self.q_value = q_value
if target:
next_target = self.target_model.predict(next_states.reshape(1, len(next_states)))
else:
next_target = self.model.predict(next_states.reshape(1, len(next_states)))
next_q_value = self.getQvalue(rewards, next_target, dones)
X_batch = np.append(X_batch, np.array([states.copy()]), axis=0)
Y_sample = q_value.copy()
Y_sample[0][actions] = next_q_value
Y_batch = np.append(Y_batch, np.array([Y_sample[0]]), axis=0)
if dones:
X_batch = np.append(X_batch, np.array([next_states.copy()]), axis=0)
Y_batch = np.append(Y_batch, np.array([[rewards] * self.action_size]), axis=0)
self.model.fit(X_batch, Y_batch, batch_size=self.batch_size, epochs=1, verbose=0)
def state_to_nparray(state):
state_array = None
for key, value in state.items():
if state_array is None:
state_array = value
else:
state_array = np.concatenate((state_array, value), dtype=np.float32)
return state_array
def main():
# rospy.init_node('turtlebot3_dqn_stage_1')
# pub_result = rospy.Publisher('result', Float32MultiArray, queue_size=5)
# pub_get_action = rospy.Publisher('get_action', Float32MultiArray, queue_size=5)
# result = Float32MultiArray()
# get_action = Float32MultiArray()
state_size = 17
action_size = 5
# env = Env(action_size)
env = gym.make('gym_examples/CrowdNav-v0')
agent = ReinforceAgent(state_size, action_size)
scores, episodes = [], []
global_episode = 0
global_step = 0
start_time = time.time()
for e in range(agent.load_episode + 1, EPISODES):
done = False
state, info = env.reset(seed = e*4+1)
state = state_to_nparray(state)
score = 0
for t in range(agent.episode_step):
action = agent.getAction(state)
next_state, reward, done, result, info = env.step(action)
next_state = state_to_nparray(next_state)
agent.appendMemory(state, action, reward, next_state, done)
if len(agent.memory) >= agent.train_start:
if global_step <= agent.target_update:
agent.trainModel()
else:
agent.trainModel(True)
score += reward
state = next_state
# get_action.data = [action, score, reward]
# pub_get_action.publish(get_action)
if e % 100 == 0:
agent.model.save(agent.dirPath + str(e) + '.h5')
with open(agent.dirPath + str(e) + '.json', 'w') as outfile:
json.dump(param_dictionary, outfile)
if t >= 100:
# rospy.loginfo("Time out!!")
print("Timeout")
done = True
if done:
print("episode ",e,": ", result)
# result.data = [score, np.max(agent.q_value)]
# pub_result.publish(result)
agent.updateTargetModel()
scores.append(score)
episodes.append(e)
m, s = divmod(int(time.time() - start_time), 60)
h, m = divmod(m, 60)
# rospy.loginfo('Ep: %d score: %.2f memory: %d epsilon: %.2f time: %d:%02d:%02d',
# e, score, len(agent.memory), agent.epsilon, h, m, s)
param_keys = ['epsilon']
param_values = [agent.epsilon]
param_dictionary = dict(zip(param_keys, param_values))
break
global_step += 1
if global_episode % agent.target_update == 0:
# rospy.loginfo("UPDATE TARGET NETWORK")
logging = 0
global_episode += 1
if agent.epsilon > agent.epsilon_min:
agent.epsilon *= agent.epsilon_decay
if __name__ == '__main__':
main()