-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil_mrqa_official_eval.py
142 lines (114 loc) · 4.83 KB
/
util_mrqa_official_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) 2019, Facebook, Inc. and its affiliates. All Rights Reserved
"""Official evaluation script for the MRQA Workshop Shared Task.
Adapted fromt the SQuAD v1.1 official evaluation script.
Usage:
python official_eval.py dataset_file.jsonl.gz prediction_file.json
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from pathlib import Path
from urllib.parse import urlparse
import argparse
import string
import re
import json
import gzip
import os
from collections import Counter
def cached_path(url_or_filename, cache_dir=None):
"""
Given something that might be a URL (or might be a local path),
determine which. If it's a URL, download the file and cache it, and
return the path to the cached file. If it's already a local path,
make sure the file exists and then return the path.
"""
if cache_dir is None:
cache_dir = os.path.dirname(url_or_filename)
if isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
url_or_filename = os.path.expanduser(url_or_filename)
parsed = urlparse(url_or_filename)
if parsed.scheme in ('http', 'https', 's3'):
# URL, so get it from the cache (downloading if necessary)
return get_from_cache(url_or_filename, cache_dir)
elif os.path.exists(url_or_filename):
# File, and it exists.
return url_or_filename
elif parsed.scheme == '':
# File, but it doesn't exist.
raise FileNotFoundError("file {} not found".format(url_or_filename))
else:
# Something unknown
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return (normalize_answer(prediction) == normalize_answer(ground_truth))
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def read_predictions(prediction_file):
with open(prediction_file) as f:
predictions = json.load(f)
return predictions
def read_answers(gold_file):
answers = {}
with gzip.open(gold_file, 'rb') as f:
for i, line in enumerate(f):
example = json.loads(line)
if i == 0 and 'header' in example:
continue
for qa in example['qas']:
answers[qa['qid']] = qa['answers']
return answers
def evaluate(answers, predictions, skip_no_answer=False):
f1 = exact_match = total = 0
for qid, ground_truths in answers.items():
if qid not in predictions:
if not skip_no_answer:
message = 'Unanswered question %s will receive score 0.' % qid
print(message)
total += 1
continue
total += 1
prediction = predictions[qid]
exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)
exact_match = 100.0 * exact_match / total
f1 = 100.0 * f1 / total
return {'exact_match': exact_match, 'f1': f1}
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluation for MRQA Workshop Shared Task')
parser.add_argument('dataset_file', type=str, help='Dataset File')
parser.add_argument('prediction_file', type=str, help='Prediction File')
parser.add_argument('--skip-no-answer', action='store_true')
args = parser.parse_args()
answers = read_answers(cached_path(args.dataset_file))
predictions = read_predictions(cached_path(args.prediction_file))
metrics = evaluate(answers, predictions, args.skip_no_answer)
print(json.dumps(metrics))