-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·304 lines (251 loc) · 12.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import time
from collections import deque, OrderedDict
import numpy as np
import torch
from agents import algo, util
from agents.arguments import get_args
from agents.envs import make_vec_envs
from agents.model import Policy
from agents.storage import DictRolloutStorage
from evaluation import evaluate
from lilgym.data.utils import get_data
from lilgym.envs.utils import set_seeds
from lilgym.envs.utils_action import TowerStop, ScatterStop
from agents.common.preprocessing import get_obs_shape
from agents.common.util import get_optimizer_from_name, get_scheduler_from_name
import wandb
def main():
args = get_args()
if args.wandb:
wandb.init(
project=f'{args.env_opt}-{args.learn_opt}',
name=f'{args.wandb_run_name}',
)
wandb.define_metric("train/step")
wandb.define_metric("train/*", step_metric="train/step")
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if args.cuda and torch.cuda.is_available() and args.cuda_deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
log_dir = os.path.expanduser(args.log_dir)
eval_log_dir = log_dir + "_eval"
util.cleanup_log_dir(log_dir)
util.cleanup_log_dir(eval_log_dir)
torch.set_num_threads(1)
device = torch.device("cuda:0" if args.cuda else "cpu")
# Data
data = get_data(args.env_opt, args.learn_opt, 'train')
dev_data = get_data(args.env_opt, args.learn_opt, 'dev')
# valid_data = get_data(args.env_opt, args.learn_opt, 'valid')
# Set seeds for torch, numpy and random
set_seeds(args.seed)
# Initialize env and set random seed for the env
envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, args.log_dir, device, False,
data=data,
stop_forcing=args.stop_forcing)
actor_critic = Policy(
get_obs_shape(envs.observation_space),
envs.action_space,
base_kwargs={'recurrent': args.recurrent_policy,
'learn_opt': args.learn_opt,
'env_opt': args.env_opt,
'text_feat': args.text_feat,
'eval_mode': args.eval_mode},
custom_model=args.model)
optimizer_sd = None
scheduler_sd = None
if args.load_model:
actor_critic.load_state_dict(torch.load(args.load_model + ".h5"), strict=False)
optimizer_sd = args.load_model + "_optim.h5"
scheduler_sd = args.load_model + "_scheduler.h5"
actor_critic.to(device)
num_updates = int(
args.num_env_steps) // args.num_steps // args.num_processes
num_warmup_updates = int(args.warmup_percent * num_updates)
optimizer = get_optimizer_from_name(args.optim_type, actor_critic, args.lr, args.eps, optimizer_sd)
scheduler = get_scheduler_from_name(args.scheduler, optimizer, num_warmup_updates, num_updates, scheduler_sd)
if args.algo == 'ppo':
agent = algo.PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
optimizer,
scheduler=scheduler,
max_grad_norm=args.max_grad_norm)
rollouts = DictRolloutStorage(args.num_steps, args.num_processes,
get_obs_shape(envs.observation_space), envs.action_space,
actor_critic.recurrent_hidden_state_size)
# For fixed text embedding: compute and cache
if args.text_feat in ["bertfix"]:
for dataset in [data, dev_data]:
for k in dataset.keys():
actor_critic.base.precompute_bert_embedding(dataset[k]["sentence"])
obs, infos = envs.reset()
if isinstance(obs, OrderedDict):
for k, v in obs.items():
if isinstance(v, torch.Tensor):
rollouts.obs[k][0].copy_(v)
elif isinstance(v, np.ndarray):
if k == "sentence": # type: str
rollouts.obs[k][0] = v.copy()
else: # "image" or "target"
rollouts.obs[k][0] = torch.from_numpy(v.copy())
else:
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards = deque(maxlen=10)
episode_acc = deque(maxlen=10)
episode_acc_nosf = deque(maxlen=10) # nosf: evaluation with non-stop forcing
train_episode_acc = [0]
dev_episode_acc = [0]
train_episode_acc_nosf = [0]
dev_episode_acc_nosf = [0]
if args.stop_forcing:
if args.env_opt == "tower":
STOP_ACTION_TENSOR = torch.Tensor([TowerStop().to_array()]).to(device)
else:
STOP_ACTION_TENSOR = torch.Tensor([ScatterStop().to_array()]).to(device)
start = time.time()
for j in range(num_updates):
update_acc = []
if args.use_linear_lr_decay:
# decrease learning rate linearly
util.update_linear_schedule(
agent.optimizer, j, num_updates,
agent.optimizer.lr if args.algo == "acktr" else args.lr)
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
if isinstance(rollouts.obs, dict):
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.get_obs(step), rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
else:
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
# Obser reward and next obs
step_action = action.clone()
obs, reward, done, truncated, infos = envs.step(step_action)
for idx, info in enumerate(infos):
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
episode_acc.append(info['accuracy'])
episode_acc_nosf.append(info['accuracy_nosf'])
update_acc.append(info['accuracy'])
# Stop forcing
if ('accuracy' in info.keys() and args.stop_forcing):
with torch.no_grad():
# If a valid goal state is reached
if info['accuracy'] == 1:
action = STOP_ACTION_TENSOR
if isinstance(rollouts.obs, dict):
_state = rollouts.get_obs(step)
else:
_state = torch.unsqueeze(rollouts.obs[step][idx], dim=0)
_masks = rollouts.masks[step][idx]
_hidden = rollouts.recurrent_hidden_states[step][idx]
_, _action_log_prob, _, _ = actor_critic.evaluate_actions(_state, _hidden, _masks, action)
action_log_prob[idx] = _action_log_prob
# Need to uniformize length when putting in storage
if args.env_opt == "tower":
padded_action = torch.full((1, 3), -1)
padded_action[0][:len(action[0])] = action[0]
elif args.env_opt == "scatter":
padded_action = torch.full((1, 6), -1)
padded_action[0][:len(action[0])] = action[0]
# If done, then clean the history of observations
assert len(done) == len(truncated)
done_or_truncated = [(done[i] or truncated[i]) for i in range(len(done))]
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done_or_truncated])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
rollouts.insert(obs, recurrent_hidden_states, padded_action,
action_log_prob, value, reward, masks, bad_masks)
with torch.no_grad():
if isinstance(rollouts.obs, dict):
next_value = actor_critic.get_value(
rollouts.get_obs(-1), rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
else:
next_value = actor_critic.get_value(
rollouts.obs[-1], rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
rollouts.compute_returns(next_value, args.use_gae, args.gamma,
args.gae_lambda, args.use_proper_time_limits)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
# Save for every interval-th episode or for the last epoch
if (j % args.save_interval == 0
or j == num_updates - 1) and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
torch.save(actor_critic.state_dict(),
os.path.join(save_path, args.env_name + f"_{j}.h5"))
torch.save(agent.optimizer.state_dict(),
os.path.join(save_path, args.env_name + f"_{j}_optim.h5"))
if agent.scheduler:
torch.save(agent.scheduler.state_dict(),
os.path.join(save_path, args.env_name + f"_{j}_scheduler.h5"))
if j % args.log_interval == 0 and len(episode_rewards) > 1:
total_num_steps = (j + 1) * args.num_processes * args.num_steps
end = time.time()
print(
"Updates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f} mean/median acc {:.1f}/{:.1f} min/max acc {:.1f}/{:.1f} mean/median acc no sf {:.1f}/{:.1f} min/max acc no sf {:.1f}/{:.1f}\n"# full train acc {:.1f} full dev acc {:.1f}\n"
.format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards),
np.mean(episode_rewards), np.median(episode_rewards),
np.min(episode_rewards), np.max(episode_rewards),
np.mean(episode_acc), np.median(episode_acc),
np.min(episode_acc), np.max(episode_acc),
np.mean(episode_acc_nosf), np.median(episode_acc_nosf),
np.min(episode_acc_nosf), np.max(episode_acc_nosf),
dist_entropy, value_loss, action_loss))
if (args.eval_interval is not None and len(episode_rewards) > 1
and j % args.eval_interval == 0):
train_acc = evaluate(actor_critic, None, args.env_name, args.seed,
args.num_processes, eval_log_dir, device, 'Train', data,
stop_forcing=args.stop_forcing)
train_episode_acc.append(train_acc)
print(f"> Best train_acc so far: {round(max(train_episode_acc), 5)}")
dev_acc = evaluate(actor_critic, None, args.env_name, args.seed,
args.num_processes, eval_log_dir, device, 'Dev', dev_data,
stop_forcing=args.stop_forcing)
dev_episode_acc.append(dev_acc)
print(f"> Best dev_acc so far: {round(max(dev_episode_acc), 5)}")
if args.stop_forcing:
train_acc_nosf = evaluate(actor_critic, None, args.env_name, args.seed,
args.num_processes, eval_log_dir, device, 'Train', data,
stop_forcing=False)
train_episode_acc_nosf.append(train_acc_nosf)
print(f"> Best train_acc_nosf so far: {round(max(train_episode_acc_nosf), 5)}")
dev_acc_nosf = evaluate(actor_critic, None, args.env_name, args.seed,
args.num_processes, eval_log_dir, device, 'Dev', dev_data,
stop_forcing=False)
dev_episode_acc_nosf.append(dev_acc_nosf)
print(f"> Best dev_acc_nosf so far: {round(max(dev_episode_acc_nosf), 5)}")
if args.wandb:
wandb.log({"train/step": j,
"train/train_acc_sf": train_acc,
"train/dev_acc_sf": dev_acc,
"train/train_acc_nosf": train_acc_nosf,
"train/dev_acc_nosf": dev_acc_nosf})
else:
if args.wandb:
wandb.log({"train/step": j,
"train/train_acc_nosf": train_acc,
"train/dev_acc_nosf": dev_acc})
if __name__ == "__main__":
main()