-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocker_DNN.py
41 lines (35 loc) · 1.77 KB
/
docker_DNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import tensorflow as tf
import pandas as pd
import numpy as np
from numpy import argmax
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.model_selection import train_test_split
data = pd.read_csv("test2.csv")
X = data.values[:, :data.shape[1] - 1]
y = data.values[:, data.shape[1] - 1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=y, random_state=777)
model = Sequential()
model.add(Dense(15, activation="relu", kernel_initializer="random_uniform",
kernel_regularizer=tf.keras.regularizers.L1L2(0.08)
, input_dim=32))
model.add(Dense(10, activation="relu",kernel_regularizer=tf.keras.regularizers.L1L2(0.08)
, kernel_initializer="random_uniform"))
model.add(Dense(10, activation="relu",kernel_regularizer=tf.keras.regularizers.L1L2(0.08)
, kernel_initializer="random_uniform"))
model.add(Dense(10, activation="relu",kernel_regularizer=tf.keras.regularizers.L1L2(0.08)
, kernel_initializer="random_uniform"))
model.add(Dense(10, activation="relu",kernel_regularizer=tf.keras.regularizers.L1L2(0.08)
, kernel_initializer="random_uniform"))
model.add(Dense(1, kernel_regularizer=tf.keras.regularizers.L1L2(0.09)
, activation="sigmoid"))
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["acc"])
model.fit(X_train, y_train, epochs=10, batch_size=100, verbose=3, validation_data=(X_test, y_test))
print("acc > {}".format(model.evaluate(X_test, y_test)))
model.save("test_docker_dnn.h5")
test = model.predict_classes(X_test)
print(test)
# 5. 모델 평가하기
loss_and_metrics = model.evaluate(X_test, y_test, batch_size=10)
print('')
print('loss_and_metrics : ' + str(loss_and_metrics))