-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormal.c
221 lines (185 loc) · 5.38 KB
/
normal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#include "normal.h"
#include <float.h>
#include <math.h>
static double get_del(double x, double rational);
static double gauss_small(const double x);
static double gauss_medium(const double x);
static double gauss_large(const double x);
double liknorm_cdf(const double x)
{
double result;
double absx = fabs(x);
/* sqrt(32) */
const double sqrt32 = 5.656854249492380581898487434955;
const double xupper = 8.572;
const double xlower = -37.519;
const double epsilon = DBL_EPSILON / 2.0;
if (absx < epsilon)
{
result = 0.5;
return result;
}
else if (absx < 0.66291)
{
result = 0.5 + gauss_small(x);
return result;
}
else if (absx < sqrt32)
{
result = gauss_medium(x);
if (x > 0.0)
{
result = 1.0 - result;
}
return result;
}
else if (x > xupper)
{
result = 1.0;
return result;
}
else if (x < xlower)
{
result = 0.0;
return result;
}
else
{
result = gauss_large(x);
if (x > 0.0)
{
result = 1.0 - result;
}
}
return result;
}
double liknorm_logcdf(const double a)
{
/* we compute the left hand side of the approx (LHS) in one shot */
double log_LHS;
/* variable used to check for convergence */
double last_total = 0;
/* includes first term from the RHS summation */
double right_hand_side = 1;
/* numerator for RHS summand */
long numerator = 1;
/* use reciprocal for denominator to avoid division */
double denom_factor = 1;
/* the precomputed division we use to adjust the denominator */
double denom_cons = 1.0 / (a * a);
long sign = 1, i = 0;
const double pi = 3.14159265358979323846;
if (a > 6) return -liknorm_cdf(-a); /* log(1+x) \approx x */
if (a > -20) return log(liknorm_cdf(a));
log_LHS = -0.5 * a * a - log(-a) - 0.5 * log(2 * pi);
while (fabs(last_total - right_hand_side) > DBL_EPSILON)
{
i += 1;
last_total = right_hand_side;
sign = -sign;
denom_factor *= denom_cons;
numerator *= 2 * i - 1;
right_hand_side += (double)(sign * numerator) * denom_factor;
}
return log_LHS + log(right_hand_side);
}
static double get_del(double x, double rational)
{
const double scale = 16.0;
const double xsq = floor(x * scale) / scale;
const double del = (x - xsq) * (x + xsq) * 0.5;
return exp(-0.5 * xsq * xsq) * exp(-1.0 * del) * rational;
}
/*
* Normal cdf for fabs(x) < 0.66291
*/
double gauss_small(const double x)
{
unsigned int i;
double result = 0.0;
double xsq;
double xnum;
double xden;
const double a[5] = {2.2352520354606839287, 161.02823106855587881,
1067.6894854603709582, 18154.981253343561249,
0.065682337918207449113};
const double b[4] = {47.20258190468824187, 976.09855173777669322,
10260.932208618978205, 45507.789335026729956};
xsq = x * x;
xnum = a[4] * xsq;
xden = xsq;
for (i = 0; i < 3; i++)
{
xnum = (xnum + a[i]) * xsq;
xden = (xden + b[i]) * xsq;
}
result = x * (xnum + a[3]) / (xden + b[3]);
return result;
}
/*
* Normal cdf for 0.66291 < fabs(x) < sqrt(32).
*/
double gauss_medium(const double x)
{
unsigned int i;
double temp = 0.0;
double result = 0.0;
double xnum;
double xden;
double absx;
const double c[9] = {0.39894151208813466764, 8.8831497943883759412,
93.506656132177855979, 597.27027639480026226,
2494.5375852903726711, 6848.1904505362823326,
11602.651437647350124, 9842.7148383839780218,
1.0765576773720192317e-8};
const double d[8] = {22.266688044328115691, 235.38790178262499861,
1519.377599407554805, 6485.558298266760755,
18615.571640885098091, 34900.952721145977266,
38912.003286093271411, 19685.429676859990727};
absx = fabs(x);
xnum = c[8] * absx;
xden = absx;
for (i = 0; i < 7; i++)
{
xnum = (xnum + c[i]) * absx;
xden = (xden + d[i]) * absx;
}
temp = (xnum + c[7]) / (xden + d[7]);
result = get_del(x, temp);
return result;
}
/*
* Normal cdf for
* {sqrt(32) < x < GAUSS_XUPPER} union { GAUSS_XLOWER < x < -sqrt(32) }.
*/
double gauss_large(const double x)
{
int i;
double result;
double xsq;
double temp;
double xnum;
double xden;
double absx;
/* 1/sqrt(2*pi) */
const double sq2 = 0.398942280401432702863218082712;
const double p[6] = {0.21589853405795699, 0.1274011611602473639,
0.022235277870649807, 0.001421619193227893466,
2.9112874951168792e-5, 0.02307344176494017303};
const double q[5] = {1.28426009614491121, 0.468238212480865118,
0.0659881378689285515, 0.00378239633202758244,
7.29751555083966205e-5};
absx = fabs(x);
xsq = 1.0 / (x * x);
xnum = p[5] * xsq;
xden = xsq;
for (i = 0; i < 4; i++)
{
xnum = (xnum + p[i]) * xsq;
xden = (xden + q[i]) * xsq;
}
temp = xsq * (xnum + p[4]) / (xden + q[4]);
temp = (sq2 - temp) / absx;
result = get_del(x, temp);
return result;
}