-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_classifier_model.py
executable file
·205 lines (166 loc) · 9.59 KB
/
image_classifier_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import time
import sys
sys.path.append('..')
import cv2
from joblib import load
import numpy as np
from sklearn.model_selection import train_test_split
from keras import backend as K
from keras import Sequential
from keras.models import load_model
# from keras.applications import InceptionV3
# from keras.applications.inception_v3 import preprocess_input
from keras.applications import Xception
from keras.applications.xception import preprocess_input
from keras.backend import resize_images
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.callbacks import ModelCheckpoint, EarlyStopping
from keras.layers import Dropout, Conv2D, Dense, MaxPooling2D, Flatten
# from image_preprocess import ImageProcessor
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Building CNN model from scratch
def model_builder(model_input, model_output):
model = Sequential()
# 2*[Convolution operation > Nonlinear activation (relu)] > Pooling operation
model.add(Conv2D(32, (3, 3), activation='relu', padding='valid', input_shape=tuple(model_input.shape[1:])))
model.add(Conv2D(16, (3, 3), activation='relu', padding='valid'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Conv2D(64, (3, 3), activation='relu', padding='valid'))
model.add(Conv2D(32, (3, 3), activation='relu', padding='valid'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(model_output.shape[1], activation='softmax'))
# Nesterov momentum included for parameters update, makes correction to parameters update values
# by taking into account the approximated future value of the objective function
# However does not account for the importance for each parameter when performing updates
# op = optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True)
# Nesterov Momentum Adaptive Moment Estimation
# op = optimizers.Nadam()
# RMSProp
op = optimizers.RMSprop()
model.compile(optimizer=op, metrics=['accuracy'], loss='categorical_crossentropy')
return model
# Uses pre-trained Inception V3 image classifier model and apply transfer learning
def transfer_learning_model(image_shape, num_classes):
model = Sequential()
model.add(Xception(include_top=False, weights='imagenet', input_shape=image_shape, pooling='avg'))
# model.add(Dense(8192, activation='relu'))
model.add(Dropout(0.75))
model.add(Dense(num_classes, activation='softmax'))
model.layers[0].trainable = False
model.compile(optimizer='adam', metrics=['accuracy'], loss='categorical_crossentropy')
return model
def model_train(model, model_name, training_input=None, training_output=None, batch_size=64, epochs=100000, verbose=1,
validation_generator=None, generator=None, use_multiprocessing=False, max_workers=1,
max_queue_size=5, save_weights_only=True, validation_steps=None):
save_checkpoint = ModelCheckpoint(model_name, save_best_only=True, verbose=1, save_weights_only=save_weights_only)
early_stop = EarlyStopping(min_delta=0.01, patience=20, verbose=1, mode='min')
if validation_generator is None:
save_checkpoint.monitor = 'loss'
early_stop.monitor = 'loss'
else:
validation_steps = 1
callbacks = [save_checkpoint, early_stop]
if generator:
model.fit_generator(generator=generator, steps_per_epoch=(generator.n // batch_size), epochs=epochs,
verbose=verbose, callbacks=callbacks, validation_data=validation_generator,
use_multiprocessing=use_multiprocessing, workers=max_workers,
max_queue_size=max_queue_size, validation_steps=validation_steps)
elif training_input and training_output:
model.fit(training_input, training_output, batch_size=batch_size, epochs=epochs, verbose=verbose, shuffle=True,
callbacks=callbacks)
def predict_breed(model, image, default_size=(250, 250),
ordered_classes_dict=load(os.path.join(os.path.dirname(__file__),
'telegram_bot', 'index_to_doggo.pkl'))):
resized_image = cv2.resize(image, default_size)
ndarray_image = np.reshape(resized_image, ((1, ) + resized_image.shape))
casted_image = ndarray_image.astype(np.float32)
preprocessed_image = preprocess_input(casted_image)
breed_pred = model.predict(preprocessed_image)
breed_pred = breed_pred.reshape(breed_pred.shape[1])
# breed = ordered_classes_list[np.argmax(breed_pred, axis=1)[0]]
# breed_prob = np.max(breed_pred, axis=1)[0]
top_3_breeds_pred = np.argsort(breed_pred)[-3:][::-1]
breeds = [ordered_classes_dict[breed_index] for breed_index in top_3_breeds_pred]
# breeds = [ordered_classes_list[index] for index in top_3_breeds_pred]
breeds_prob = breed_pred[top_3_breeds_pred]
return [breeds, breeds_prob]
def decode_map(ndarray, mapping_list):
max_indices = ndarray.argmax(axis=1).tolist()
mapped_values = [mapping_list[index] for index in max_indices]
return mapped_values
# def preprocess_dir_images(image_directory, image_size, classes_list):
# image_array = []
# image_labels_array = []
# placeholder_img = np.zeros(image_size, np.uint8)
# image_classes = os.listdir(image_directory)
# for image_class in image_classes:
# image_class_dir = os.path.join(image_directory, image_class)
# image_filenames = os.listdir(image_class_dir)
# for image_filename in image_filenames:
# image_filepath = os.path.join(image_class_dir, image_filename)
# resized_image = cv2.resize(preprocess_input(cv2.imread(image_filepath)),
# dst=placeholder_img, dsize=image_size[0:2])
# image_array.append(resized_image)
# image_label_array = np.zeros(len(classes_list))
# label_index = classes_list.index(image_class)
# image_label_array[label_index] = 1
# image_labels_array.append(image_label_array)
# return np.asarray(image_array), np.asarray(image_labels_array)
if __name__ == '__main__':
save_weights_name = 'models/doggo_classifier_weights_v2.h5'
save_model_name = 'models/doggo_classifier_model_v1.h5'
batch_size = 200
image_shape = (250, 250, 3)
number_of_classes = len(os.listdir('data/train'))
# # Custom image pre-processing
# processor = ImageProcessor('images', '../image_scrapper/breeds.csv', save_encoding_fname='y_encoding.pkl')
# x, y = processor.load_images(pad=True)
# train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.15, random_state=15, stratify=np.unique(y))
# # Training image data generator with Keras pre-processing function
# train_datagen = ImageDataGenerator(rotation_range=45, horizontal_flip=True, data_format='channels_last',
# zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2,
# fill_mode='nearest', shear_range=0.2, preprocessing_function=preprocess_input)
# train_generator = train_datagen.flow_from_directory('data/train', target_size=image_shape[:-1],
# batch_size=batch_size, class_mode='categorical')
#
# val_datagen = ImageDataGenerator(data_format='channels_last', fill_mode='nearest',
# preprocessing_function=preprocess_input, rotation_range=30,
# horizontal_flip=True, zoom_range=0.2, width_shift_range=0.2,
# height_shift_range=0.2)
# val_generator = val_datagen.flow_from_directory('data/test', target_size=image_shape[:-1],
# batch_size=batch_size, class_mode='categorical')
# Building of transfer learning model, loading weights and training using train image data generator
doggo_model = transfer_learning_model(image_shape=image_shape, num_classes=number_of_classes)
doggo_model.load_weights(save_weights_name)
# model_train(doggo_model, save_weights_name, generator=train_generator, max_queue_size=True, max_workers=-1,
# save_weights_only=True, validation_generator=val_generator)
# # Model testing
# val_datagen = ImageDataGenerator(data_format='channels_last', fill_mode='nearest',
# preprocessing_function=preprocess_input)
# val_generator = val_datagen.flow_from_directory('data/test', target_size=image_shape[:-1], batch_size=100,
# shuffle=False)
# breed_preds = doggo_model.predict_generator(val_generator)
# decoded_preds = decode_map(breed_preds, os.listdir(r'data\train'))
# # Testing on single image prediction
# doggo_model = load_model(save_model_name)
print(time.ctime(), 'start')
doggo_friends_dict = {}
friends_folder = 'data/friends'
for doggo_breed in os.listdir(friends_folder):
breed_folder = os.path.join(friends_folder, doggo_breed)
doggo_friends_dict[doggo_breed] = {}
for breed_image in os.listdir(breed_folder):
breed_image_filepath = os.path.join(breed_folder, breed_image)
breed_pred = predict_breed(doggo_model, cv2.imread(breed_image_filepath))
doggo_friends_dict[doggo_breed][breed_image] = breed_pred
print(time.ctime(), 'end')
# model.evaluate_generator(generator=val_generator)