-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
189 lines (151 loc) · 6.88 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Author: Lim Kha Shing
# Reference:
# https://face-recognition.readthedocs.io/en/latest/_modules/face_recognition/api.html#compare_faces
# https://raw.githubusercontent.com/ageitgey/face_recognition/master/examples/web_service_example.py
import os
import cv2
import request_id
from flask import Flask, jsonify, request, render_template
from request_id import RequestIdMiddleware
from werkzeug.serving import make_server
from src.OCR.crop_morphology import crop_morphology
from src.constants import ALLOWED__PICTURE_EXTENSIONS, ALLOWED_VIDEO_EXTENSIONS, frames_folder, upload_folder, \
image_size_threshold, max_resize, source_type_image, source_type_video
from src.face_processing import compare_face
static = os.path.abspath('static')
app = Flask(__name__, static_url_path='', static_folder=static)
middleware = RequestIdMiddleware(
app,
format='{status} {REQUEST_METHOD:<6} {REQUEST_PATH:<60} {REQUEST_ID}',
)
def get_error_result(source_type, is_no_files):
if is_no_files:
result = {
"status_code": 400,
"error": "No " + source_type + " Found"
}
else:
result = {
"status_code": 400,
"error": source_type + " extension is not correct"
}
return jsonify(result)
def create_directories():
# Check if upload and frames folder existed or not.
# If not then create it
if not os.path.exists(upload_folder):
os.makedirs(upload_folder)
if not os.path.exists(frames_folder):
os.makedirs(frames_folder)
# Get unique Request ID
face_matching_request_id = request_id.get_request_id(request)
print("Request ID:", face_matching_request_id)
# create a subdirectory with unique request id inside frames and upload folder
request_upload_folder_path = os.path.join(upload_folder, face_matching_request_id)
request_frames_folder_path = os.path.join(frames_folder, face_matching_request_id)
os.makedirs(request_frames_folder_path)
os.makedirs(request_upload_folder_path)
return request_upload_folder_path, request_frames_folder_path
def set_tolerance_and_threshold(tolerance, threshold, sharpness):
if tolerance != '':
tolerance = float(tolerance)
else:
tolerance = 0.50
if threshold != '':
threshold = float(threshold)
else:
threshold = 0.80
if sharpness is not None and sharpness != '':
sharpness = float(sharpness)
else:
sharpness = 0.60
print("Tolerance: ", tolerance)
print("Face match threshold: ", threshold)
print("Sharpness threshold: ", sharpness)
return tolerance, threshold, sharpness
def check_files_uploaded():
if request.files['known'].filename == '':
print("no image uploaded")
return False, source_type_image
if request.files['unknown'].filename == '':
print("no video uploaded")
return False, source_type_video
return True, "pass"
def check_valid_files_uploaded(known, unknown):
if not known.filename.lower().endswith(ALLOWED__PICTURE_EXTENSIONS):
return False, source_type_image
if not unknown.filename.lower().endswith(ALLOWED_VIDEO_EXTENSIONS):
return False, source_type_video
return True, "pass"
@app.route('/api/upload', methods=['POST'])
def upload_image_video():
# Check whether files is uploaded or not
is_files_uploaded, source_type = check_files_uploaded()
if not is_files_uploaded:
if source_type == "image":
return get_error_result("Image", True)
else:
return get_error_result("Video", True)
known = request.files['known']
unknown = request.files['unknown']
# Check if a valid image and video file was uploaded
is_valid_files_uploaded, source_type = check_valid_files_uploaded(known, unknown)
if not is_valid_files_uploaded:
if source_type == "image":
return get_error_result("Image", True)
else:
return get_error_result("Video", True)
# Flask doesn't receive any information about
# what type the client intended each value to be.
# So it parses all values as strings.
# And we need to parse it manually to float and set the value
tolerance = request.form['tolerance']
threshold = request.form['threshold']
sharpness = request.form.get('sharpness')
tolerance, threshold, sharpness = set_tolerance_and_threshold(tolerance, threshold, sharpness)
# for Unit Test to pass without running through whole face matching process
if "testing" in request.form:
return jsonify(result={"status_code": 200})
# create absolutely paths for the uploaded files
request_upload_folder_path, request_frames_folder_path = create_directories()
unknown_filename_path = os.path.join(request_upload_folder_path, unknown.filename)
known_filename_path = os.path.join(request_upload_folder_path, known.filename)
# Save the uploaded files to directory
# Example: upload/request-id/image.jpg
unknown.save(unknown_filename_path)
known.save(known_filename_path)
video_path = os.path.join(request_upload_folder_path, unknown.filename)
if known and unknown:
# Resize the known image and scale it down
known_image_size = os.stat(known_filename_path).st_size
print("Image Size: ", known_image_size)
if known_image_size > image_size_threshold:
print("Resizing the known image as it was larger than ", image_size_threshold)
known_image = cv2.imread(known_filename_path)
resized_image = cv2.resize(known_image, None, fx=0.1, fy=0.1, interpolation=cv2.INTER_AREA)
cv2.imwrite(known_filename_path, resized_image)
print("Resized image ", os.stat(known_filename_path).st_size)
if os.stat(known_filename_path).st_size < max_resize:
print("Enlarge back as it smaller than ", max_resize)
known_image = cv2.imread(known_filename_path)
resized_image = cv2.resize(known_image, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
cv2.imwrite(known_filename_path, resized_image)
print("Resized image ", os.stat(known_filename_path).st_size)
crop_morphology(known_filename_path)
# process both image and video
return compare_face(known_filename_path,
video_path,
request_upload_folder_path,
request_frames_folder_path,
tolerance=tolerance,
face_match_threshold=threshold,
sharpness_threshold=sharpness)
@app.route('/')
def index():
return render_template('index.html')
if __name__ == '__main__':
# add own IPV4 address for debug
# In android, put android:usesCleartextTraffic="true" in manifest application tag
# for allow cross domain to LocalHost
server = make_server('0.0.0.0', 8080, middleware)
server.serve_forever()