-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
345 lines (300 loc) · 12.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import argparse
import logging
import os
import sys
import time
from pathlib import Path
import nmslib
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
package_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(package_dir)
from data_scripts.utils import knn_search_batch, seed_everything, numel
from dataset.dataset import FingerprintDataset
from model.basic import BasicFeedforward
def train(args):
seed_everything(args.seed)
print("creating checkpoint folder")
(args.path_checkpoint).mkdir(parents=True, exist_ok=args.checkpoint_existok)
# load templates
with open(args.path_templates, "r") as f:
template_strs = [l.strip().split("|")[1] for l in f.readlines()]
# load kNN search index (nmslib)
index_all_mols = nmslib.init(method="hnsw", space="cosinesimil")
index_all_mols.loadIndex(str(args.path_index), load_data=True)
# instantiate model & loss function
hidden_sizes = list(map(int, args.hidden_sizes.split(",")))
if args.model == "f_act":
model = BasicFeedforward(
input_size=args.input_fp_dim * 3,
act_fn="ReLU",
hidden_sizes=hidden_sizes, # [1000, 1200, 3000, 3000]
output_size=4,
dropout=args.dropout, # 0
final_act_fn="softmax",
)
criterion = nn.CrossEntropyLoss(reduction="sum")
elif args.model == "f_rxn":
model = BasicFeedforward(
input_size=args.input_fp_dim * 4,
act_fn="ReLU",
hidden_sizes=hidden_sizes, # [1000, 1200, 3000, 3000]
output_size=len(template_strs),
dropout=args.dropout, # 0
final_act_fn="softmax",
)
criterion = nn.CrossEntropyLoss(reduction="sum")
elif args.model == "f_rt1":
model = BasicFeedforward(
input_size=args.input_fp_dim * 3,
act_fn="ReLU",
hidden_sizes=hidden_sizes, # [1000, 1200, 3000, 3000]
output_size=args.output_fp_dim,
dropout=args.dropout, # 0
final_act_fn=None,
)
criterion = nn.MSELoss(reduction="sum")
elif args.model == "f_rt2":
model = BasicFeedforward(
input_size=args.input_fp_dim * 4 + len(template_strs),
act_fn="ReLU",
hidden_sizes=hidden_sizes, # [1000, 1200, 3000, 3000]
output_size=args.output_fp_dim,
dropout=args.dropout, # 0
final_act_fn=None,
)
criterion = nn.MSELoss(reduction="sum")
else:
raise ValueError(f"inval model name {args.model}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using {device} device")
model = model.to(device)
print(f"number of parameters in model: {numel(model)}")
if args.optim == "Adam":
optimizer = optim.Adam(model.parameters(), lr=args.lr)
else:
raise ValueError(f"unrecognized optimizer {args.optim}")
# prepare train & val datasets
train_dataset = FingerprintDataset(args.path_steps_train, args.path_states_train)
train_loader = DataLoader(train_dataset, batch_size=args.bs, shuffle=True)
val_dataset = FingerprintDataset(args.path_steps_val, args.path_states_val)
val_loader = DataLoader(val_dataset, batch_size=args.bs_eval, shuffle=False)
del train_dataset, val_dataset
# start training
train_losses, val_losses = [], []
train_accs, val_accs = [], []
max_val_acc = float("-inf")
wait = 0 # early stopping patience counter
start = time.time()
for epoch in range(args.epochs):
train_loss, train_correct, train_seen = 0, 0, 0
train_loader = tqdm(train_loader, desc="training", disable=args.logging)
model.train()
for data in train_loader:
X, y = data
if args.model == "f_rt1" or args.model == "f_rt2":
# split y into mol_embedding + mol_idx
rct_idxs = y[:, -1].unsqueeze(-1)
y = y[:, :-1]
else:
y = torch.argmax(y, dim=-1).long()
X, y = X.to(device), y.to(device)
model.zero_grad()
optimizer.zero_grad()
y_pred = model(X)
loss = criterion(y_pred, y)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_seen += y.shape[0]
if args.model == "f_act" or args.model == "f_rxn":
# calculate accuracy
pred_idxs = torch.argmax(y_pred, dim=-1)
train_correct += torch.sum(torch.eq(pred_idxs, y), dim=0).item()
else:
# nearest neighbor search over all building block embeddings to get nearest idx
# compare with groundtruth building block idx
pred_idxs, _ = knn_search_batch(
y_pred.detach().cpu().numpy(), index_all_mols, k=1
)
pred_idxs = torch.Tensor(pred_idxs)
train_correct += torch.sum(torch.eq(pred_idxs, rct_idxs), dim=0).item()
if not args.logging:
train_loader.set_description(
f"training: loss={train_loss / train_seen:.4f}, top-1 acc={train_correct / train_seen:.4f}"
)
train_loader.refresh()
train_losses.append(train_loss / train_seen)
train_accs.append(train_correct / train_seen)
# validation
model.eval()
with torch.no_grad():
val_loss, val_correct, val_seen = 0, 0, 0
val_loader = tqdm(val_loader, desc="validating", disable=args.logging)
for data in val_loader:
X, y = data
if args.model == "f_rt1" or args.model == "f_rt2":
# split y into mol_embedding + mol_idx
rct_idxs = y[:, -1].unsqueeze(-1)
y = y[:, :-1]
else:
y = torch.argmax(y, dim=-1).long()
X, y = X.to(device), y.to(device)
y_pred = model(X)
loss = criterion(y_pred, y)
val_loss += loss.item()
val_seen += y.shape[0]
if args.model == "f_act" or args.model == "f_rxn":
# calculate accuracy
pred_idxs = torch.argmax(y_pred, dim=-1)
val_correct += torch.sum(torch.eq(pred_idxs, y), dim=0).item()
else:
# nearest neighbor search over all building block embeddings to get nearest idx
# compare with groundtruth building block idx
pred_idxs, _ = knn_search_batch(
y_pred.detach().cpu().numpy(), index_all_mols, k=1
)
pred_idxs = torch.Tensor(pred_idxs)
val_correct += torch.sum(
torch.eq(pred_idxs, rct_idxs), dim=0
).item()
if not args.logging:
val_loader.set_description(
f"validating: loss={val_loss / val_seen:.4f}, top-1 acc={val_correct / val_seen:.4f}"
)
val_loader.refresh()
val_losses.append(val_loss / val_seen)
val_accs.append(val_correct / val_seen)
if val_accs[-1] > max_val_acc:
# save best model
torch.save(
{
"epoch": epoch,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"train_accs": train_accs,
"train_losses": train_losses,
"val_accs": val_accs,
"val_losses": val_losses,
"max_val_acc": max_val_acc,
},
args.path_checkpoint / "best.pth.tar",
)
print("Saved best model")
if args.early_stop and max_val_acc - val_accs[-1] > 0:
if args.early_stop_patience <= wait:
message = f"\nEarly stopped at the end of epoch: {epoch}, \
\nval loss: {val_losses[-1]:.4f}, val top-1 acc: {val_accs[-1]:.4f} \
\nbest val top-1 acc: {max_val_acc:.4f}\n"
print(message)
break
else:
wait += 1
print(
f"\nvalidation accuracy did not increase, patience count: {wait}\n"
)
else:
wait = 0
max_val_acc = max(max_val_acc, val_accs[-1])
message = f"\nEnd of epoch: {epoch}, \
\ntrain loss: {train_losses[-1]:.4f}, train top-1 acc: {train_accs[-1]:.4f}, \
\nval loss: {val_losses[-1]:.4f}, val top-1 acc: {val_accs[-1]:.4f} \
\nbest val top-1 acc: {max_val_acc:.4f}\n"
print(message)
# save last checkpoint
torch.save(
{
"epoch": epoch,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"train_accs": train_accs,
"train_losses": train_losses,
"val_accs": val_accs,
"val_losses": val_losses,
"max_val_acc": max_val_acc,
},
args.path_checkpoint / "last.pth.tar",
)
print("Saved last model")
print(f"Finished training, total time (minutes): {(time.time() - start) / 60 :.3f}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# input data arguments
parser.add_argument(
"--path_states_train", type=Path, default="data/states_f_act_train.npz"
)
parser.add_argument(
"--path_states_val", type=Path, default="data/states_f_act_val.npz"
)
parser.add_argument(
"--path_steps_train", type=Path, default="data/steps_f_act_train.npz"
)
parser.add_argument(
"--path_steps_val", type=Path, default="data/steps_f_act_val.npz"
)
parser.add_argument("--path_index", type=Path, default="data/knn_rct_fps.index")
parser.add_argument(
"--path_templates", type=Path, default="data/templates_cleaned.txt"
)
# model arguments
parser.add_argument(
"--model",
type=str,
help="model type to train, among the four networks ['f_act', 'f_rxn', 'f_rt1', 'f_rt2']",
)
parser.add_argument("--bs", type=int, default=64, help="batch size, training")
parser.add_argument(
"--bs_eval", type=int, default=96, help="batch size, validation"
)
parser.add_argument(
"--input_fp_dim",
type=int,
default=4096,
help="dim of each input fingerprint into network",
)
parser.add_argument(
"--output_fp_dim",
type=int,
default=256,
help="dim of each output fingerprint from network",
)
parser.add_argument(
"--hidden_sizes",
type=str,
default="1000,1200,3000,3000",
help="network hidden_sizes, separated by commas",
)
parser.add_argument("--dropout", type=float, default=0.1, help="dropout value")
# training arguments
parser.add_argument(
"--path_checkpoint", type=Path, help="path to store model checkpoints"
)
parser.add_argument(
"--checkpoint_existok",
action="store_true",
help="whether to override existing checkpoint",
)
parser.add_argument(
"--epochs", type=int, default=100, help="number of training epochs"
)
parser.add_argument(
"--early_stop", action="store_true", help="whether to early stop"
)
parser.add_argument(
"--logging", action="store_true", help="whether logging to disk (disables tqdm)"
)
parser.add_argument(
"--early_stop_patience",
type=int,
default=10,
help="early stop patience (number of epochs)",
)
parser.add_argument("--seed", type=int, default=1337, help="random seed")
parser.add_argument("--optim", type=str, default="Adam", help="optimizer")
parser.add_argument("--lr", type=float, default=1e-4, help="learning rate")
args = parser.parse_args()
print(args)
train(args)