-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvgg.py
85 lines (67 loc) · 2.71 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
from .idq import IDQ
__all__ = ["cifar10_vgg7", "cifar10_vgg7_idq"]
_vgg_conf = {
# CIFAR-10 input size: 32
# 2x(128C3) - MP2 - 2x(256C3) - MP2 - 2x(512C3) - MP2 - 1024FC - Softmax
"vgg7_cifar10": [128, 128, "M", 256, 256, "M", 512, 512],
}
def _make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
class CIFAR_VGG(nn.Module):
def __init__(self, features, num_classes=10, init_weights=True):
super(CIFAR_VGG, self).__init__()
self.features = features
self.pooling = nn.MaxPool2d(kernel_size=2, stride=2)
self.classifier = nn.Sequential(
# nn.Dropout(p=0.5),
nn.Linear(512 * 4 * 4, 1024),
nn.ReLU(True),
nn.Dropout(p=0.5),
nn.Linear(1024, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = self.pooling(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
class CIFAR_VGG_IDQ(CIFAR_VGG, IDQ):
def __init__(self, features, num_classes=10, init_weights=True,
kw=4, ka=4, fp_layers=None, align_zero=True,
use_channel_quant=False, use_ckpt=False, use_multi_domain=False):
CIFAR_VGG.__init__(self, features, num_classes, init_weights)
IDQ.__init__(self, CIFAR_VGG.forward, kw, ka, fp_layers,
align_zero, use_channel_quant, use_ckpt, use_multi_domain)
def cifar10_vgg7():
return CIFAR_VGG(_make_layers(_vgg_conf["vgg7_cifar10"], batch_norm=True))
def cifar10_vgg7_idq(**kwargs):
return CIFAR_VGG_IDQ(_make_layers(_vgg_conf["vgg7_cifar10"], batch_norm=True), **kwargs)