-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_EIGNN_chains.py
196 lines (170 loc) · 7.28 KB
/
train_EIGNN_chains.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from __future__ import division
from __future__ import print_function
import os
#os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import time
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import ipdb
from utils import accuracy, clip_gradient
from models_chains import IGNN, EIGNN_Linear
from datasets_utils import *
from copy import deepcopy
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False,
help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=2000,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=16,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--kappa', type=float, default=0.9,
help='Projection parameter. ||W|| <= kappa/lpf(A)')
parser.add_argument('--dataset', type=str, default="chains-10",
help='Dataset to use.')
parser.add_argument('--feature', type=str, default="mul",
choices=['mul', 'cat', 'adj'],
help='feature-type')
parser.add_argument('--normalization', type=str, default='AugNormAdj',
choices=['AugNormAdj'],
help='Normalization method for the adjacency matrix.')
parser.add_argument('--degree', type=int, default=2,
help='degree of the approximation.')
parser.add_argument('--per', type=int, default=-1,
help='Number of each nodes so as to balance.')
parser.add_argument('--experiment', type=str, default="base-experiment",
help='feature-type')
# IDM-SGC arguments
parser.add_argument('--gamma', type=float, default=0.8)
parser.add_argument('--num_eigenvec', type=int, default=100)
parser.add_argument('--path', type=str, default='./results/')
parser.add_argument('--num_chains', type=int, default=20, help='num of chains')
parser.add_argument('--chain_len', type=int, default=10, help='the length of each chain')
parser.add_argument('--num_class', type=int, default=2, help='num of class')
parser.add_argument('--patience', type=int, default=200, help='early stop patience')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
if not os.path.exists(args.path):
os.mkdir(args.path)
result_name = '_'.join(['EIGNN', str(args.epochs), str(args.lr), str(args.weight_decay),
str(args.num_chains), str(args.chain_len)]) + '.txt'
result_path = os.path.join(args.path, result_name)
filep = open(result_path, 'w')
filep.write(str(args) + '\n')
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# Load data
adj, sp_adj, features, labels, idx_train, idx_val, idx_test = load_citation_syn_chain_IDM(args.normalization, args.cuda,
args.num_chains,
args.chain_len,
num_class=args.num_class)
if not os.path.exists(args.path):
os.mkdir(args.path)
features = features.t()
Y = labels
m = features.shape[0]
m_y = torch.max(Y).int().item() + 1
S = adj
# input(f'adj: {adj}')
print(f'adj.shape: {adj.shape}, m_y: {m_y}, m: {m}')
model = EIGNN_Linear(adj, sp_adj, m, m_y, args.num_eigenvec, args.gamma)
# ipdb.set_trace()
# Model and optimizer
optimizer = optim.Adam(model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
if args.cuda:
model.cuda()
features = features.cuda()
adj = adj.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()#[:10]
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
def train(epoch):
t = time.time()
model.train()
optimizer.zero_grad()
# output = model(features, adj)
output = model(features)
output = F.log_softmax(output, dim=1)
loss_train = F.nll_loss(output[idx_train], labels[idx_train])
acc_train = accuracy(output[idx_train], labels[idx_train])
loss_train.backward()
optimizer.step()
if not args.fastmode:
# Evaluate validation set performance separately,
# deactivates dropout during validation run.
model.eval()
# output = model(features, adj)
output = model(features)
output = F.log_softmax(output, dim=1)
loss_val = F.nll_loss(output[idx_val], labels[idx_val])
acc_val = accuracy(output[idx_val], labels[idx_val])
loss_test = F.nll_loss(output[idx_test], labels[idx_test])
acc_test = accuracy(output[idx_test], labels[idx_test])
outstr = 'Epoch: {:04d} '.format(epoch+1) + \
'loss_train: {:.4f} '.format(loss_train.item()) + \
'acc_train: {:.4f} '.format(acc_train.item()) + \
'loss_val: {:.4f} '.format(loss_val.item()) + \
'acc_val: {:.4f} '.format(acc_val.item()) + \
'loss_test: {:.4f} '.format(loss_test.item()) + \
'acc_test: {:.4f} '.format(acc_test.item()) + \
'time: {:.4f}s'.format(time.time() - t)
print(outstr)
filep.write(outstr + '\n')
return loss_val, acc_val, loss_test, acc_test
def test():
model.eval()
# output = model(features, adj)
output = model(features)
output = F.log_softmax(output, dim=1)
loss_test = F.nll_loss(output[idx_test], labels[idx_test])
acc_test = accuracy(output[idx_test], labels[idx_test])
print("Dataset: " + args.dataset)
filep.write("Dataset: " + args.dataset + '\n')
outstr = "Test set results:" + \
"loss= {:.4f}".format(loss_test.item()) + \
"accuracy= {:.4f}".format(acc_test.item())
print(outstr)
filep.write(outstr + '\n')
# Train model
t_total = time.time()
best_val_loss = 1000
cnt = 0
for epoch in range(args.epochs):
loss_val, acc_val, loss_test, acc_test = train(epoch)
if loss_val < best_val_loss:
cnt = 0
best_val_loss = loss_val
weights = deepcopy(model.state_dict())
else:
cnt += 1
if cnt == args.patience:
print(f'Early stop @ Epoch {epoch}, loss_val: {loss_val}, acc_val: {acc_val}, '
f'loss_test: {loss_test}, acc_test: {acc_test}')
filep.write(f'Early stop @ Epoch {epoch}, loss_val: {loss_val}, acc_val: {acc_val}, '
f'loss_test: {loss_test}, acc_test: {acc_test}\n')
break
print("Optimization Finished!")
filep.write("Optimization Finished!\n")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
filep.write("Total time elapsed: {:.4f}s\n".format(time.time() - t_total))
# Testing
model.load_state_dict(weights)
test()