- Tensor Object张量对象
- Operations on the Tensor Object 对该张量对象进行的各种运算
- Computation Graph and Optimizations 计算图和优化
- Auto-differentiation Tool/Function 自动微分工具
- BLAS / cuBLAS and cuDNN extensions 扩展组件
- Install Torch on AWS EC2 Instance or Ubuntu 16.04 LTS
-
Installation Tutorial: http://torch.ch/docs/getting-started.html
[Optional] Install Git
$ sudo apt-get update $ sudo apt-get install git
Run commands one by one in terminal:
$ git clone https://github.com/torch/distro.git ~/torch --recursive $ cd ~/torch; bash install-deps; $ ./install.sh
On Linux with bash:
$ source ~/.bashrc
Install image and torchnet packages:
$ luarocks install image $ luarocks install torchnet
-
- Install Vim:
sudo apt install vim
- Install Git:
sudo apt install git
- Install (for python 3.6, as of Jun 2017)
- Open Terminal:
arch
to verify if the system is 32-bit or 64-bit. - Download Anaconda accordingly: http://continuum.io/downloads.html
- Open Terminal:
bash ~/Downloads/Anaconda3-4.4.0-Linux-x86_64.sh
to install - The installer will prompts:
Do you wish the installer to prepend the Anaconda<2 or 3> install location to PATH in your /home/<user>/.bashrc ?
Always choose 'YES'. Otherwise, specify the path to Anaconda when using it: Edit file.bashrc
and add~/anaconda2/bin
or~/anaconda3/bin
to the system PATH. i.e.,export PATH="/home/<user>/anaconda<2 or 3>/bin:$PATH"
then source the.bashrc
file by typingsource ~/.bashrc
- Open Terminal:
- Create and Specify Environment:
- To view the current virtual environment
- To create a virtual machine:
conda create -n tensorflow
- Install Packages:
- Numpy
- Pandas
- tensorflow
- tempfile (optional)
- urllib
- Install (ubuntu) https://www.tensorflow.org/install/install_linux
- Numpy
- Pandas
- Matplotlib
- Scipy
- [Youtube] Data School - Machine Learning in Python with Scikit-Learn
- Map / Reduce + Hadoop——分布式存储和处理系统
- M / R——处理大量数据的范式
- Pig,Hive,Cascalog——在Map / Reduce 上的框架
- Spark——数据处理和训练的全栈解决方案(full stack solution)
- Google Cloud Dataflow
- Install NVidia GTX 1080 GPU on Ubuntu 16.04
- On BIOS, disable 'Secured Boot State'. (This step is optional, Ubuntu will help to disable it in later steps)
- In Ubuntu 16.04 LTS, download CUDA 8.0 (latest as of Jan 2016) and install:
wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.44-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu1604_8.0.44-1_amd64.deb sudo apt-get update sudo apt-get install cuda
- Modify PATH and LD_LIBRARY_PATH:
export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
- Add the above to the end of .bashrc file.
- Register account on https://developer.nvidia.com/cudnn and download latest cuDNN. As of Jan 2016, use cuDNN v5.1 (August 10, 2016), for CUDA 8.0 RC - cuDNN v5.1 Library for Linux.
- Uncompress and copy the cuDNN files into the CUDA directory. Assuming the CUDA toolkit is installed in /usr/local/cuda, run the following commands:
tar xvzf cudnn-8.0-linux-x64-v5.1.tgz sudo cp cuda/include/cudnn.h /usr/local/cuda/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
- Run command
nvidia-smi
to see details about the card. - Run command
nvidia-settings
to see more details..
- Multi-GPU on cutorch: torch/cutorch#42
- AWS P2 Instance GPU Cuda Installation Guide: