forked from vmujadia/onemtbhashaverse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_server.py
121 lines (99 loc) · 3.38 KB
/
run_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import sys
import traceback
from joblib import load
import uvicorn
from fastapi import FastAPI, Request, status
from fastapi.logger import logger
from fastapi.encoders import jsonable_encoder
from fastapi.responses import RedirectResponse, JSONResponse
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
import torch
from call_onemt import translate_onemt
from oneconfig import CONFIG
from exception_handler import validation_exception_handler, python_exception_handler
from schema import *
# Initialize API Server
app = FastAPI(
title="ML Model",
description="Description of the ML Model",
version="0.0.1",
terms_of_service=None,
contact=None,
license_info=None
)
# Allow CORS for local debugging
app.add_middleware(CORSMiddleware, allow_origins=["*"])
# Mount static folder, like demo pages, if any
app.mount("/static", StaticFiles(directory="static/"), name="static")
# Load custom exception handlers
app.add_exception_handler(RequestValidationError, validation_exception_handler)
app.add_exception_handler(Exception, python_exception_handler)
#@app.on_event("startup")
#async def startup_event():
# """
# Initialize FastAPI and add variables
# """
#
# logger.info('Running envirnoment: {}'.format(CONFIG['ENV']))
# logger.info('PyTorch using device: {}'.format(CONFIG['DEVICE']))
#
# # Initialize the pytorch model
# model = Model()
# model.load_state_dict(torch.load(
# CONFIG['MODEL_PATH'], map_location=torch.device(CONFIG['DEVICE'])))
# model.eval()
#
# # add model and other preprocess tools too app state
# app.package = {
# "scaler": load(CONFIG['SCALAR_PATH']), # joblib.load
# "model": model
# }
@app.post('/onemtapi/v1/translate',
response_model=InferenceResponse,
responses={422: {"model": ErrorResponse},
500: {"model": ErrorResponse}}
)
def do_predict(request: Request, body: InferenceInput):
"""
Perform prediction on input data
"""
logger.info('API predict called')
logger.info(f'input: {body}')
# prepare input data
task = body.task
domain = body.domain
source_language = body.source_language
target_language = body.target_language
text = body.text
ttext = body.ttext
# run model inference
output = translate_onemt(task, domain, text, ttext, source_language, target_language)
print (output)
return {'error': False, 'data':output, 'languages':source_language+':'+target_language, 'version':'IIITHV0.0.0.3'}
@app.get('/about')
def show_about():
"""
Get deployment information, for debugging
"""
def bash(command):
output = os.popen(command).read()
return output
return {
"sys.version": sys.version,
"torch.__version__": torch.__version__,
"torch.cuda.is_available()": torch.cuda.is_available(),
"torch.version.cuda": torch.version.cuda,
"torch.backends.cudnn.version()": torch.backends.cudnn.version(),
"torch.backends.cudnn.enabled": torch.backends.cudnn.enabled,
"nvidia-smi": bash('nvidia-smi')
}
if __name__ == '__main__':
# server api
uvicorn.run("main:app", host="0.0.0.0", port=8080,
reload=True, debug=True, log_config="log.ini"
)