forked from explosion/spaCy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_ml.py
985 lines (823 loc) · 31.8 KB
/
_ml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
# coding: utf8
from __future__ import unicode_literals
import numpy
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu
from thinc.t2t import ExtractWindow, ParametricAttention
from thinc.t2v import Pooling, sum_pool, mean_pool
from thinc.i2v import HashEmbed
from thinc.misc import Residual, FeatureExtracter
from thinc.misc import LayerNorm as LN
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
from thinc.api import with_getitem, flatten_add_lengths
from thinc.api import uniqued, wrap, noop
from thinc.linear.linear import LinearModel
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module, copy_array
from thinc.neural.optimizers import Adam
from thinc import describe
from thinc.describe import Dimension, Synapses, Biases, Gradient
from thinc.neural._classes.affine import _set_dimensions_if_needed
import thinc.extra.load_nlp
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE
from .errors import Errors, user_warning, Warnings
from . import util
from . import ml as new_ml
from .ml import _legacy_tok2vec
VECTORS_KEY = "spacy_pretrained_vectors"
# Backwards compatibility with <2.2.2
USE_MODEL_REGISTRY_TOK2VEC = False
def cosine(vec1, vec2):
xp = get_array_module(vec1)
norm1 = xp.linalg.norm(vec1)
norm2 = xp.linalg.norm(vec2)
if norm1 == 0.0 or norm2 == 0.0:
return 0
else:
return vec1.dot(vec2) / (norm1 * norm2)
def create_default_optimizer(ops, **cfg):
learn_rate = util.env_opt("learn_rate", 0.001)
beta1 = util.env_opt("optimizer_B1", 0.9)
beta2 = util.env_opt("optimizer_B2", 0.999)
eps = util.env_opt("optimizer_eps", 1e-8)
L2 = util.env_opt("L2_penalty", 1e-6)
max_grad_norm = util.env_opt("grad_norm_clip", 1.0)
optimizer = Adam(ops, learn_rate, L2=L2, beta1=beta1, beta2=beta2, eps=eps)
optimizer.max_grad_norm = max_grad_norm
optimizer.device = ops.device
return optimizer
@layerize
def _flatten_add_lengths(seqs, pad=0, drop=0.0):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=pad)
X = ops.flatten(seqs, pad=pad)
return (X, lengths), finish_update
def _zero_init(model):
def _zero_init_impl(self, *args, **kwargs):
self.W.fill(0)
model.on_init_hooks.append(_zero_init_impl)
if model.W is not None:
model.W.fill(0.0)
return model
def with_cpu(ops, model):
"""Wrap a model that should run on CPU, transferring inputs and outputs
as necessary."""
model.to_cpu()
def with_cpu_forward(inputs, drop=0.0):
cpu_outputs, backprop = model.begin_update(_to_cpu(inputs), drop=drop)
gpu_outputs = _to_device(ops, cpu_outputs)
def with_cpu_backprop(d_outputs, sgd=None):
cpu_d_outputs = _to_cpu(d_outputs)
return backprop(cpu_d_outputs, sgd=sgd)
return gpu_outputs, with_cpu_backprop
return wrap(with_cpu_forward, model)
def _to_cpu(X):
if isinstance(X, numpy.ndarray):
return X
elif isinstance(X, tuple):
return tuple([_to_cpu(x) for x in X])
elif isinstance(X, list):
return [_to_cpu(x) for x in X]
elif hasattr(X, "get"):
return X.get()
else:
return X
def _to_device(ops, X):
if isinstance(X, tuple):
return tuple([_to_device(ops, x) for x in X])
elif isinstance(X, list):
return [_to_device(ops, x) for x in X]
else:
return ops.asarray(X)
class extract_ngrams(Model):
def __init__(self, ngram_size, attr=LOWER):
Model.__init__(self)
self.ngram_size = ngram_size
self.attr = attr
def begin_update(self, docs, drop=0.0):
batch_keys = []
batch_vals = []
for doc in docs:
unigrams = doc.to_array([self.attr])
ngrams = [unigrams]
for n in range(2, self.ngram_size + 1):
ngrams.append(self.ops.ngrams(n, unigrams))
keys = self.ops.xp.concatenate(ngrams)
keys, vals = self.ops.xp.unique(keys, return_counts=True)
batch_keys.append(keys)
batch_vals.append(vals)
# The dtype here matches what thinc is expecting -- which differs per
# platform (by int definition). This should be fixed once the problem
# is fixed on Thinc's side.
lengths = self.ops.asarray(
[arr.shape[0] for arr in batch_keys], dtype=numpy.int_
)
batch_keys = self.ops.xp.concatenate(batch_keys)
batch_vals = self.ops.asarray(self.ops.xp.concatenate(batch_vals), dtype="f")
return (batch_keys, batch_vals, lengths), None
@describe.on_data(
_set_dimensions_if_needed, lambda model, X, y: model.init_weights(model)
)
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nO=Dimension("Output size"),
nP=Dimension("Maxout pieces"),
W=Synapses("Weights matrix", lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
b=Biases("Bias vector", lambda obj: (obj.nO, obj.nP)),
pad=Synapses(
"Pad",
lambda obj: (1, obj.nF, obj.nO, obj.nP),
lambda M, ops: ops.normal_init(M, 1.0),
),
d_W=Gradient("W"),
d_pad=Gradient("pad"),
d_b=Gradient("b"),
)
class PrecomputableAffine(Model):
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nP = nP
self.nI = nI
self.nF = nF
def begin_update(self, X, drop=0.0):
Yf = self.ops.gemm(
X, self.W.reshape((self.nF * self.nO * self.nP, self.nI)), trans2=True
)
Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO, self.nP))
Yf = self._add_padding(Yf)
def backward(dY_ids, sgd=None):
dY, ids = dY_ids
dY, ids = self._backprop_padding(dY, ids)
Xf = X[ids]
Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI))
self.d_b += dY.sum(axis=0)
dY = dY.reshape((dY.shape[0], self.nO * self.nP))
Wopfi = self.W.transpose((1, 2, 0, 3))
Wopfi = self.ops.xp.ascontiguousarray(Wopfi)
Wopfi = Wopfi.reshape((self.nO * self.nP, self.nF * self.nI))
dXf = self.ops.gemm(dY.reshape((dY.shape[0], self.nO * self.nP)), Wopfi)
# Reuse the buffer
dWopfi = Wopfi
dWopfi.fill(0.0)
self.ops.gemm(dY, Xf, out=dWopfi, trans1=True)
dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI))
# (o, p, f, i) --> (f, o, p, i)
self.d_W += dWopfi.transpose((2, 0, 1, 3))
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return dXf.reshape((dXf.shape[0], self.nF, self.nI))
return Yf, backward
def _add_padding(self, Yf):
Yf_padded = self.ops.xp.vstack((self.pad, Yf))
return Yf_padded
def _backprop_padding(self, dY, ids):
# (1, nF, nO, nP) += (nN, nF, nO, nP) where IDs (nN, nF) < 0
mask = ids < 0.0
mask = mask.sum(axis=1)
d_pad = dY * mask.reshape((ids.shape[0], 1, 1))
self.d_pad += d_pad.sum(axis=0)
return dY, ids
@staticmethod
def init_weights(model):
"""This is like the 'layer sequential unit variance', but instead
of taking the actual inputs, we randomly generate whitened data.
Why's this all so complicated? We have a huge number of inputs,
and the maxout unit makes guessing the dynamics tricky. Instead
we set the maxout weights to values that empirically result in
whitened outputs given whitened inputs.
"""
if (model.W ** 2).sum() != 0.0:
return
ops = model.ops
xp = ops.xp
ops.normal_init(model.W, model.nF * model.nI, inplace=True)
ids = ops.allocate((5000, model.nF), dtype="f")
ids += xp.random.uniform(0, 1000, ids.shape)
ids = ops.asarray(ids, dtype="i")
tokvecs = ops.allocate((5000, model.nI), dtype="f")
tokvecs += xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
tokvecs.shape
)
def predict(ids, tokvecs):
# nS ids. nW tokvecs. Exclude the padding array.
hiddens = model(tokvecs[:-1]) # (nW, f, o, p)
vectors = model.ops.allocate((ids.shape[0], model.nO * model.nP), dtype="f")
# need nS vectors
hiddens = hiddens.reshape(
(hiddens.shape[0] * model.nF, model.nO * model.nP)
)
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
vectors = vectors.reshape((vectors.shape[0], model.nO, model.nP))
vectors += model.b
vectors = model.ops.asarray(vectors)
if model.nP >= 2:
return model.ops.maxout(vectors)[0]
else:
return vectors * (vectors >= 0)
tol_var = 0.01
tol_mean = 0.01
t_max = 10
t_i = 0
for t_i in range(t_max):
acts1 = predict(ids, tokvecs)
var = model.ops.xp.var(acts1)
mean = model.ops.xp.mean(acts1)
if abs(var - 1.0) >= tol_var:
model.W /= model.ops.xp.sqrt(var)
elif abs(mean) >= tol_mean:
model.b -= mean
else:
break
def link_vectors_to_models(vocab):
vectors = vocab.vectors
if vectors.name is None:
vectors.name = VECTORS_KEY
if vectors.data.size != 0:
user_warning(Warnings.W020.format(shape=vectors.data.shape))
ops = Model.ops
for word in vocab:
if word.orth in vectors.key2row:
word.rank = vectors.key2row[word.orth]
else:
word.rank = 0
data = ops.asarray(vectors.data)
# Set an entry here, so that vectors are accessed by StaticVectors
# (unideal, I know)
key = (ops.device, vectors.name)
if key in thinc.extra.load_nlp.VECTORS:
if thinc.extra.load_nlp.VECTORS[key].shape != data.shape:
# This is a hack to avoid the problem in #3853. Maybe we should
# print a warning as well?
old_name = vectors.name
new_name = vectors.name + "_%d" % data.shape[0]
user_warning(Warnings.W019.format(old=old_name, new=new_name))
vectors.name = new_name
key = (ops.device, vectors.name)
thinc.extra.load_nlp.VECTORS[key] = data
def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
import torch.nn
from thinc.api import with_square_sequences
from thinc.extra.wrappers import PyTorchWrapperRNN
if depth == 0:
return layerize(noop())
model = torch.nn.LSTM(nI, nO // 2, depth, bidirectional=True, dropout=dropout)
return with_square_sequences(PyTorchWrapperRNN(model))
def Tok2Vec(width, embed_size, **kwargs):
if not USE_MODEL_REGISTRY_TOK2VEC:
# Preserve prior tok2vec for backwards compat, in v2.2.2
return _legacy_tok2vec.Tok2Vec(width, embed_size, **kwargs)
pretrained_vectors = kwargs.get("pretrained_vectors", None)
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
subword_features = kwargs.get("subword_features", True)
char_embed = kwargs.get("char_embed", False)
conv_depth = kwargs.get("conv_depth", 4)
bilstm_depth = kwargs.get("bilstm_depth", 0)
conv_window = kwargs.get("conv_window", 1)
cols = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]
doc2feats_cfg = {"arch": "spacy.Doc2Feats.v1", "config": {"columns": cols}}
if char_embed:
embed_cfg = {
"arch": "spacy.CharacterEmbed.v1",
"config": {
"width": 64,
"chars": 6,
"@mix": {
"arch": "spacy.LayerNormalizedMaxout.v1",
"config": {"width": width, "pieces": 3},
},
"@embed_features": None,
},
}
else:
embed_cfg = {
"arch": "spacy.MultiHashEmbed.v1",
"config": {
"width": width,
"rows": embed_size,
"columns": cols,
"use_subwords": subword_features,
"@pretrained_vectors": None,
"@mix": {
"arch": "spacy.LayerNormalizedMaxout.v1",
"config": {"width": width, "pieces": 3},
},
},
}
if pretrained_vectors:
embed_cfg["config"]["@pretrained_vectors"] = {
"arch": "spacy.PretrainedVectors.v1",
"config": {
"vectors_name": pretrained_vectors,
"width": width,
"column": cols.index("ID"),
},
}
if cnn_maxout_pieces >= 2:
cnn_cfg = {
"arch": "spacy.MaxoutWindowEncoder.v1",
"config": {
"width": width,
"window_size": conv_window,
"pieces": cnn_maxout_pieces,
"depth": conv_depth,
},
}
else:
cnn_cfg = {
"arch": "spacy.MishWindowEncoder.v1",
"config": {"width": width, "window_size": conv_window, "depth": conv_depth},
}
bilstm_cfg = {
"arch": "spacy.TorchBiLSTMEncoder.v1",
"config": {"width": width, "depth": bilstm_depth},
}
if conv_depth == 0 and bilstm_depth == 0:
encode_cfg = {}
elif conv_depth >= 1 and bilstm_depth >= 1:
encode_cfg = {
"arch": "thinc.FeedForward.v1",
"config": {"children": [cnn_cfg, bilstm_cfg]},
}
elif conv_depth >= 1:
encode_cfg = cnn_cfg
else:
encode_cfg = bilstm_cfg
config = {"@doc2feats": doc2feats_cfg, "@embed": embed_cfg, "@encode": encode_cfg}
return new_ml.Tok2Vec(config)
def reapply(layer, n_times):
def reapply_fwd(X, drop=0.0):
backprops = []
for i in range(n_times):
Y, backprop = layer.begin_update(X, drop=drop)
X = Y
backprops.append(backprop)
def reapply_bwd(dY, sgd=None):
dX = None
for backprop in reversed(backprops):
dY = backprop(dY, sgd=sgd)
if dX is None:
dX = dY
else:
dX += dY
return dX
return Y, reapply_bwd
return wrap(reapply_fwd, layer)
def asarray(ops, dtype):
def forward(X, drop=0.0):
return ops.asarray(X, dtype=dtype), None
return layerize(forward)
def _divide_array(X, size):
parts = []
index = 0
while index < len(X):
parts.append(X[index : index + size])
index += size
return parts
def get_col(idx):
if idx < 0:
raise IndexError(Errors.E066.format(value=idx))
def forward(X, drop=0.0):
if isinstance(X, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
def backward(y, sgd=None):
dX = ops.allocate(X.shape)
dX[:, idx] += y
return dX
return output, backward
return layerize(forward)
def doc2feats(cols=None):
if cols is None:
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
def forward(docs, drop=0.0):
feats = []
for doc in docs:
feats.append(doc.to_array(cols))
return feats, None
model = layerize(forward)
model.cols = cols
return model
def print_shape(prefix):
def forward(X, drop=0.0):
return X, lambda dX, **kwargs: dX
return layerize(forward)
@layerize
def get_token_vectors(tokens_attrs_vectors, drop=0.0):
tokens, attrs, vectors = tokens_attrs_vectors
def backward(d_output, sgd=None):
return (tokens, d_output)
return vectors, backward
@layerize
def logistic(X, drop=0.0):
xp = get_array_module(X)
if not isinstance(X, xp.ndarray):
X = xp.asarray(X)
# Clip to range (-10, 10)
X = xp.minimum(X, 10.0, X)
X = xp.maximum(X, -10.0, X)
Y = 1.0 / (1.0 + xp.exp(-X))
def logistic_bwd(dY, sgd=None):
dX = dY * (Y * (1 - Y))
return dX
return Y, logistic_bwd
def zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
model.on_data_hooks.append(_zero_init_impl)
return model
def getitem(i):
def getitem_fwd(X, drop=0.0):
return X[i], None
return layerize(getitem_fwd)
@describe.attributes(
W=Synapses("Weights matrix", lambda obj: (obj.nO, obj.nI), lambda W, ops: None)
)
class MultiSoftmax(Affine):
"""Neural network layer that predicts several multi-class attributes at once.
For instance, we might predict one class with 6 variables, and another with 5.
We predict the 11 neurons required for this, and then softmax them such
that columns 0-6 make a probability distribution and coumns 6-11 make another.
"""
name = "multisoftmax"
def __init__(self, out_sizes, nI=None, **kwargs):
Model.__init__(self, **kwargs)
self.out_sizes = out_sizes
self.nO = sum(out_sizes)
self.nI = nI
def predict(self, input__BI):
output__BO = self.ops.affine(self.W, self.b, input__BI)
i = 0
for out_size in self.out_sizes:
self.ops.softmax(output__BO[:, i : i + out_size], inplace=True)
i += out_size
return output__BO
def begin_update(self, input__BI, drop=0.0):
output__BO = self.predict(input__BI)
def finish_update(grad__BO, sgd=None):
self.d_W += self.ops.gemm(grad__BO, input__BI, trans1=True)
self.d_b += grad__BO.sum(axis=0)
grad__BI = self.ops.gemm(grad__BO, self.W)
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return grad__BI
return output__BO, finish_update
def build_tagger_model(nr_class, **cfg):
embed_size = util.env_opt("embed_size", 2000)
if "token_vector_width" in cfg:
token_vector_width = cfg["token_vector_width"]
else:
token_vector_width = util.env_opt("token_vector_width", 96)
pretrained_vectors = cfg.get("pretrained_vectors")
subword_features = cfg.get("subword_features", True)
with Model.define_operators({">>": chain, "+": add}):
if "tok2vec" in cfg:
tok2vec = cfg["tok2vec"]
else:
tok2vec = Tok2Vec(
token_vector_width,
embed_size,
subword_features=subword_features,
pretrained_vectors=pretrained_vectors,
)
softmax = with_flatten(Softmax(nr_class, token_vector_width))
model = tok2vec >> softmax
model.nI = None
model.tok2vec = tok2vec
model.softmax = softmax
return model
def build_morphologizer_model(class_nums, **cfg):
embed_size = util.env_opt("embed_size", 7000)
if "token_vector_width" in cfg:
token_vector_width = cfg["token_vector_width"]
else:
token_vector_width = util.env_opt("token_vector_width", 128)
pretrained_vectors = cfg.get("pretrained_vectors")
char_embed = cfg.get("char_embed", True)
with Model.define_operators({">>": chain, "+": add, "**": clone}):
if "tok2vec" in cfg:
tok2vec = cfg["tok2vec"]
else:
tok2vec = Tok2Vec(
token_vector_width,
embed_size,
char_embed=char_embed,
pretrained_vectors=pretrained_vectors,
)
softmax = with_flatten(MultiSoftmax(class_nums, token_vector_width))
softmax.out_sizes = class_nums
model = tok2vec >> softmax
model.nI = None
model.tok2vec = tok2vec
model.softmax = softmax
return model
@layerize
def SpacyVectors(docs, drop=0.0):
batch = []
for doc in docs:
indices = numpy.zeros((len(doc),), dtype="i")
for i, word in enumerate(doc):
if word.orth in doc.vocab.vectors.key2row:
indices[i] = doc.vocab.vectors.key2row[word.orth]
else:
indices[i] = 0
vectors = doc.vocab.vectors.data[indices]
batch.append(vectors)
return batch, None
def build_text_classifier(nr_class, width=64, **cfg):
depth = cfg.get("depth", 2)
nr_vector = cfg.get("nr_vector", 5000)
pretrained_dims = cfg.get("pretrained_dims", 0)
with Model.define_operators({">>": chain, "+": add, "|": concatenate, "**": clone}):
if cfg.get("low_data") and pretrained_dims:
model = (
SpacyVectors
>> flatten_add_lengths
>> with_getitem(0, Affine(width, pretrained_dims))
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> Residual(ReLu(width, width)) ** 2
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
>> logistic
)
return model
lower = HashEmbed(width, nr_vector, column=1)
prefix = HashEmbed(width // 2, nr_vector, column=2)
suffix = HashEmbed(width // 2, nr_vector, column=3)
shape = HashEmbed(width // 2, nr_vector, column=4)
trained_vectors = FeatureExtracter(
[ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
) >> with_flatten(
uniqued(
(lower | prefix | suffix | shape)
>> LN(Maxout(width, width + (width // 2) * 3)),
column=0,
)
)
if pretrained_dims:
static_vectors = SpacyVectors >> with_flatten(
Affine(width, pretrained_dims)
)
# TODO Make concatenate support lists
vectors = concatenate_lists(trained_vectors, static_vectors)
vectors_width = width * 2
else:
vectors = trained_vectors
vectors_width = width
static_vectors = None
tok2vec = vectors >> with_flatten(
LN(Maxout(width, vectors_width))
>> Residual((ExtractWindow(nW=1) >> LN(Maxout(width, width * 3)))) ** depth,
pad=depth,
)
cnn_model = (
tok2vec
>> flatten_add_lengths
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> Residual(zero_init(Maxout(width, width)))
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
)
linear_model = build_bow_text_classifier(
nr_class, ngram_size=cfg.get("ngram_size", 1), exclusive_classes=False
)
if cfg.get("exclusive_classes"):
output_layer = Softmax(nr_class, nr_class * 2)
else:
output_layer = (
zero_init(Affine(nr_class, nr_class * 2, drop_factor=0.0)) >> logistic
)
model = (linear_model | cnn_model) >> output_layer
model.tok2vec = chain(tok2vec, flatten)
model.nO = nr_class
model.lsuv = False
return model
def build_bow_text_classifier(
nr_class, ngram_size=1, exclusive_classes=False, no_output_layer=False, **cfg
):
with Model.define_operators({">>": chain}):
model = with_cpu(
Model.ops, extract_ngrams(ngram_size, attr=ORTH) >> LinearModel(nr_class)
)
if not no_output_layer:
model = model >> (cpu_softmax if exclusive_classes else logistic)
model.nO = nr_class
return model
@layerize
def cpu_softmax(X, drop=0.0):
ops = NumpyOps()
def cpu_softmax_backward(dY, sgd=None):
return dY
return ops.softmax(X), cpu_softmax_backward
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False, **cfg):
"""
Build a simple CNN text classifier, given a token-to-vector model as inputs.
If exclusive_classes=True, a softmax non-linearity is applied, so that the
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
is applied instead, so that outputs are in the range [0, 1].
"""
with Model.define_operators({">>": chain}):
if exclusive_classes:
output_layer = Softmax(nr_class, tok2vec.nO)
else:
output_layer = (
zero_init(Affine(nr_class, tok2vec.nO, drop_factor=0.0)) >> logistic
)
model = tok2vec >> flatten_add_lengths >> Pooling(mean_pool) >> output_layer
model.tok2vec = chain(tok2vec, flatten)
model.nO = nr_class
return model
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
if "entity_width" not in cfg:
raise ValueError(Errors.E144.format(param="entity_width"))
conv_depth = cfg.get("conv_depth", 2)
cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
pretrained_vectors = cfg.get("pretrained_vectors", None)
context_width = cfg.get("entity_width")
with Model.define_operators({">>": chain, "**": clone}):
# context encoder
tok2vec = Tok2Vec(
width=hidden_width,
embed_size=embed_width,
pretrained_vectors=pretrained_vectors,
cnn_maxout_pieces=cnn_maxout_pieces,
subword_features=True,
conv_depth=conv_depth,
bilstm_depth=0,
)
model = (
tok2vec
>> flatten_add_lengths
>> Pooling(mean_pool)
>> Residual(zero_init(Maxout(hidden_width, hidden_width)))
>> zero_init(Affine(context_width, hidden_width, drop_factor=0.0))
)
model.tok2vec = tok2vec
model.nO = context_width
return model
@layerize
def flatten(seqs, drop=0.0):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=0)
X = ops.flatten(seqs, pad=0)
return X, finish_update
def concatenate_lists(*layers, **kwargs): # pragma: no cover
"""Compose two or more models `f`, `g`, etc, such that their outputs are
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
"""
if not layers:
return noop()
drop_factor = kwargs.get("drop_factor", 1.0)
ops = layers[0].ops
layers = [chain(layer, flatten) for layer in layers]
concat = concatenate(*layers)
def concatenate_lists_fwd(Xs, drop=0.0):
if drop is not None:
drop *= drop_factor
lengths = ops.asarray([len(X) for X in Xs], dtype="i")
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
ys = ops.unflatten(flat_y, lengths)
def concatenate_lists_bwd(d_ys, sgd=None):
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
return ys, concatenate_lists_bwd
model = wrap(concatenate_lists_fwd, concat)
return model
def masked_language_model(vocab, model, mask_prob=0.15):
"""Convert a model into a BERT-style masked language model"""
random_words = _RandomWords(vocab)
def mlm_forward(docs, drop=0.0):
mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob)
mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
output, backprop = model.begin_update(docs, drop=drop)
def mlm_backward(d_output, sgd=None):
d_output *= 1 - mask
return backprop(d_output, sgd=sgd)
return output, mlm_backward
return wrap(mlm_forward, model)
class _RandomWords(object):
def __init__(self, vocab):
self.words = [lex.text for lex in vocab if lex.prob != 0.0]
self.probs = [lex.prob for lex in vocab if lex.prob != 0.0]
self.words = self.words[:10000]
self.probs = self.probs[:10000]
self.probs = numpy.exp(numpy.array(self.probs, dtype="f"))
self.probs /= self.probs.sum()
self._cache = []
def next(self):
if not self._cache:
self._cache.extend(
numpy.random.choice(len(self.words), 10000, p=self.probs)
)
index = self._cache.pop()
return self.words[index]
def _apply_mask(docs, random_words, mask_prob=0.15):
# This needs to be here to avoid circular imports
from .tokens.doc import Doc
N = sum(len(doc) for doc in docs)
mask = numpy.random.uniform(0.0, 1.0, (N,))
mask = mask >= mask_prob
i = 0
masked_docs = []
for doc in docs:
words = []
for token in doc:
if not mask[i]:
word = _replace_word(token.text, random_words)
else:
word = token.text
words.append(word)
i += 1
spaces = [bool(w.whitespace_) for w in doc]
# NB: If you change this implementation to instead modify
# the docs in place, take care that the IDs reflect the original
# words. Currently we use the original docs to make the vectors
# for the target, so we don't lose the original tokens. But if
# you modified the docs in place here, you would.
masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces))
return mask, masked_docs
def _replace_word(word, random_words, mask="[MASK]"):
roll = numpy.random.random()
if roll < 0.8:
return mask
elif roll < 0.9:
return random_words.next()
else:
return word
def _uniform_init(lo, hi):
def wrapped(W, ops):
copy_array(W, ops.xp.random.uniform(lo, hi, W.shape))
return wrapped
@describe.attributes(
nM=Dimension("Vector dimensions"),
nC=Dimension("Number of characters per word"),
vectors=Synapses(
"Embed matrix", lambda obj: (obj.nC, obj.nV, obj.nM), _uniform_init(-0.1, 0.1)
),
d_vectors=Gradient("vectors"),
)
class CharacterEmbed(Model):
def __init__(self, nM=None, nC=None, **kwargs):
Model.__init__(self, **kwargs)
self.nM = nM
self.nC = nC
@property
def nO(self):
return self.nM * self.nC
@property
def nV(self):
return 256
def begin_update(self, docs, drop=0.0):
if not docs:
return []
ids = []
output = []
weights = self.vectors
# This assists in indexing; it's like looping over this dimension.
# Still consider this weird witch craft...But thanks to Mark Neumann
# for the tip.
nCv = self.ops.xp.arange(self.nC)
for doc in docs:
doc_ids = doc.to_utf8_array(nr_char=self.nC)
doc_vectors = self.ops.allocate((len(doc), self.nC, self.nM))
# Let's say I have a 2d array of indices, and a 3d table of data. What numpy
# incantation do I chant to get
# output[i, j, k] == data[j, ids[i, j], k]?
doc_vectors[:, nCv] = weights[nCv, doc_ids[:, nCv]]
output.append(doc_vectors.reshape((len(doc), self.nO)))
ids.append(doc_ids)
def backprop_character_embed(d_vectors, sgd=None):
gradient = self.d_vectors
for doc_ids, d_doc_vectors in zip(ids, d_vectors):
d_doc_vectors = d_doc_vectors.reshape((len(doc_ids), self.nC, self.nM))
gradient[nCv, doc_ids[:, nCv]] += d_doc_vectors[:, nCv]
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return None
return output, backprop_character_embed
def get_cossim_loss(yh, y, ignore_zeros=False):
xp = get_array_module(yh)
# Find the zero vectors
if ignore_zeros:
zero_indices = xp.abs(y).sum(axis=1) == 0
# Add a small constant to avoid 0 vectors
yh = yh + 1e-8
y = y + 1e-8
# https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity
norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True)
norm_y = xp.linalg.norm(y, axis=1, keepdims=True)
mul_norms = norm_yh * norm_y
cosine = (yh * y).sum(axis=1, keepdims=True) / mul_norms
d_yh = (y / mul_norms) - (cosine * (yh / norm_yh ** 2))
losses = xp.abs(cosine - 1)
if ignore_zeros:
# If the target was a zero vector, don't count it in the loss.
d_yh[zero_indices] = 0
losses[zero_indices] = 0
loss = losses.sum()
return loss, -d_yh