-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFormulasCircuitos.py
157 lines (140 loc) · 4.68 KB
/
FormulasCircuitos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def reatancia(f,tipo,valor):
if tipo == -1:
x_c = 1/(2*(np.pi)*f*valor)
return -1j*x_c
if tipo == 1:
x_l = 2*(np.pi)*f*valor
return 1j*x_l
def polar(z):
return (round(np.absolute(z),3),round(np.angle(z,deg=True),3),'polar')
def div_pol(z1,z2):
return (np.absolute(z1)/np.absolute(z2),np.angle(z1,deg=True)-np.angle(z2,deg=True),'polar')
def imp_mod_ang(mod,fp,tipo):
if tipo == 1:
return np.round(op_rot(mod,(180/np.pi)*np.arccos(fp)),3)
if tipo == -1:
return np.round(op_rot(mod,-(180/np.pi)*np.arccos(fp)),3)
def retangular(z):
ang_rad_comp = (np.pi/180)*z[1]*1j
return z[0]*np.exp(ang_rad_comp)
def cap_crrg_fp(s,v,f,fp_i,fp_n):
ang_i = np.arccos(fp_i)
ang_f = np.arccos(fp_n)
p = s*fp_i
delta_q = p*(np.tan(ang_i) - np.tan(ang_f))
vel_ang = 2*np.pi*f
return (delta_q)/((v**2)*vel_ang)
def zeq_p(list_imp,pol=0):
s_p = 0
for i in list_imp:
s_p += 1/i
if pol == 1:
return polar(1/s_p)
return np.round(1/s_p,3)
def zeq_s(list_imp,pol=0):
s_p = 0
for i in list_imp:
s_p += i
if pol == 1:
return polar(s_p)
return s_p
def op_rot(modulo,angulo):
ang_rad_comp = 1j*((np.pi/180)*angulo)
return np.round(modulo*np.exp(ang_rad_comp),3)
def delta_y(ra,rb,rc):
r1 = (rb*rc)/(ra+rb+rc)
r2 = (ra*rc)/(ra+rb+rc)
r3 = (ra*rb)/(ra+rb+rc)
print(f'r1 = {r1}')
print(f'r2 = {r2}')
print(f'r3 = {r3}')
return [r1,r2,r3]
def y_delta(r1,r2,r3):
ra = (r1*r2 + r2*r3 + r1*r3)/r1
rb = (r1*r2 + r2*r3 + r1*r3)/r2
rc = (r1*r2 + r2*r3 + r1*r3)/r3
print(f'ra = {ra}')
print(f'rb = {rb}')
print(f'rc = {rc}')
return [ra,rb,rc]
def delta_3fv(vp,seq,fase_ref,prt = True):
a = op_rot(1,120)
vf = op_rot(vp,fase_ref)
if seq == 1:
vab = vf*(a**0)
vbc = vf*(a**2)
vca = vf*(a**1)
if prt == False:
return[vab,vbc,vca]
print(f'vab = {polar(vab)}')
print(f'vbc = {polar(vbc)}')
print(f'vca = {polar(vca)}')
return[vab,vbc,vca]
if seq == -1:
vab = vf*(a**0)
vbc = vf*(a**1)
vca = vf*(a**2)
if prt == False:
return[vab,vbc,vca]
print(f'vab = {polar(vab)}')
print(f'vbc = {polar(vbc)}')
print(f'vca = {polar(vca)}')
return[vab,vbc,vca]
def y_3fv(vp,seq,fase_ref,prt=True):
a = op_rot(1,120)
b = op_rot(np.sqrt(3),30)
vf = op_rot(vp,fase_ref)
if seq == 1:
van,vbn,vcn = vf*(a**0),vf*(a**2),vf*(a**1)
vab,vbc,vca = b*van,b*vbn,b*vcn
if prt == False:
return [van,vbn,vcn],[vab,vbc,vca]
print(f'van = {polar(van)}| vbn = {polar(vbn)}| vcn = {polar(vcn)}')
print(f'vab = {polar(vab)}| vbc = {polar(vbc)}| vca = {polar(vca)}')
return [van,vbn,vcn],[vab,vbc,vca]
if seq == -1:
van,vbn,vcn = vf*(a**0),vf*(a**1),vf*(a**2)
vab,vbc,vca = b*van,b*vbn,b*vcn
if prt == False:
return [van,vbn,vcn],[vab,vbc,vca]
print(f'van = {polar(van)}| vbn = {polar(vbn)}| vcn = {polar(vcn)}')
print(f'vab = {polar(vab)}| vbc = {polar(vbc)}| vca = {polar(vca)}')
return [van,vbn,vcn],[vab,vbc,vca]
import numpy as np
def delta_3fi(vp,seq,fase_ref,z,prt=True):
v3f = delta_3fv(vp,seq,fase_ref,False)
iab,ibc,ica = v3f[0]/z,v3f[1]/z,v3f[2]/z
ia,ib,ic = iab - ica, ibc - iab, ica - ibc
if prt == False:
return [iab,ibc,ica],[ia,ib,ic]
print(f'iab = {polar(iab)}| ibc = {polar(ibc)}| ica = {polar(ica)}')
print(f'ia = {polar(ia)}| ib = {polar(ib)}| ic = {polar(ic)}')
return [iab,ibc,ica],[ia,ib,ic]
def y_3fi(vp,seq,fase_ref,z,prt=True):
v3f = y_3fv(vp,seq,fase_ref,False)
ia,ib,ic = v3f[0][0]/z,v3f[0][1]/z,v3f[0][2]/z
i_n = ia + ib + ic
if prt == False:
return [ia,ib,ic,i_n]
print(f'ia = {polar(ia)}| ib = {polar(ib)}| ic = {polar(ic)}| in = {polar(i_n)}')
return [ia,ib,ic,i_n]
def ref_trafo(valor,grandeza,n1,n2,lado,pol=1):
n = pol*n2/n1
if lado == 'p':
if grandeza == 'v':
return valor/n
if grandeza == 'i':
return valor*n
if grandeza == 'z':
return valor/(n**2)
if lado == 's':
if grandeza == 'v':
return valor*n
if grandeza == 'i':
return valor/n
if grandeza == 'z':
return valor*(n**2)
def rend_trafo(n1,n2,lado,rp,xp,rs,xs,rc,xm,z_l,pot,fp=1):
s_carga = pot/fp,
v_carga = np.sqrt(s_carga)
pass