forked from fangchangma/sparse-to-dense.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
417 lines (364 loc) · 18.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import argparse
import os
import shutil
import time
import sys
import csv
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
from nyu_dataloader import NYUDataset
from models import Decoder, ResNet, RefineNet, RCNN
from metrics import AverageMeter, Result
from dense_to_sparse import UniformSampling, SimulatedStereo, DSOSampling
import criteria
import utils
model_names = ['resnet18', 'resnet50']
loss_names = ['l1', 'l2']
data_names = ['nyudepthv2']
sparsifier_names = [x.name for x in [UniformSampling, SimulatedStereo, DSOSampling]]
decoder_names = Decoder.names
modality_names = NYUDataset.modality_names
cudnn.benchmark = True
parser = argparse.ArgumentParser(description='Sparse-to-Dense Training')
# parser.add_argument('--data', metavar='DIR', help='path to dataset',
# default="data/NYUDataset")
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('--data', metavar='DATA', default='nyudepthv2',
choices=data_names,
help='dataset: ' +
' | '.join(data_names) +
' (default: nyudepthv2)')
parser.add_argument('--modality', '-m', metavar='MODALITY', default='rgb',
choices=modality_names,
help='modality: ' +
' | '.join(modality_names) +
' (default: rgb)')
parser.add_argument('-s', '--num-samples', default=0, type=int, metavar='N',
help='number of sparse depth samples (default: 0)')
parser.add_argument('--max-depth', default=-1.0, type=float, metavar='D',
help='cut-off depth of sparsifier, negative values means infinity (default: inf [m])')
parser.add_argument('--grad-th', default=7, type=int, metavar='N',
help='defines the starting base gradient threshold used for determining possible keypoints as defined in DSO (default: 7)')
parser.add_argument('--window-size', default=32, type=int, metavar='N',
help='defines the size of a region for calculating region based gradient threshold as defined in DSO (default: 32)')
parser.add_argument('--sub-window-size', default=2, type=int, metavar='N',
help='starting window-size for maximum gradient search as described in DSO (default: 2)')
parser.add_argument('--eval-path', default="", metavar='Path',
help='model to be loaded in eval mode')
parser.add_argument('--sparsifier', metavar='SPARSIFIER', default=UniformSampling.name,
choices=sparsifier_names,
help='sparsifier: ' +
' | '.join(sparsifier_names) +
' (default: ' + UniformSampling.name + ')')
parser.add_argument('--decoder', '-d', metavar='DECODER', default='deconv2',
choices=decoder_names,
help='decoder: ' +
' | '.join(decoder_names) +
' (default: deconv2)')
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers (default: 10)')
parser.add_argument('--epochs', default=15, type=int, metavar='N',
help='number of total epochs to run (default: 15)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-c', '--criterion', metavar='LOSS', default='l1',
choices=loss_names,
help='loss function: ' +
' | '.join(loss_names) +
' (default: l1)')
parser.add_argument('-b', '--batch-size', default=8, type=int,
help='mini-batch size (default: 8)')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='initial learning rate (default 0.01)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
default=True, help='use ImageNet pre-trained weights (default: True)')
parser.add_argument('--use-refinenet', dest='userefinenet', action='store_true',
help='Use RefineNet instead of ResNet')
parser.add_argument('--use-rcnn', dest='usercnn', action='store_true',
help='Use RCNN instead of ResNet')
fieldnames = ['mse', 'rmse', 'absrel', 'lg10', 'mae',
'delta1', 'delta2', 'delta3',
'data_time', 'gpu_time']
best_result = Result()
best_result.set_to_worst()
def main():
global args, best_result, output_directory, train_csv, test_csv
args = parser.parse_args()
if args.modality == 'rgb' and args.num_samples != 0:
print("number of samples is forced to be 0 when input modality is rgb")
args.num_samples = 0
if args.modality == 'rgb' and args.max_depth != 0.0:
print("max depth is forced to be 0.0 when input modality is rgb/rgbd")
args.max_depth = 0.0
sparsifier = None
max_depth = args.max_depth if args.max_depth >= 0.0 else np.inf
if args.sparsifier == UniformSampling.name:
sparsifier = UniformSampling(num_samples=args.num_samples, max_depth=max_depth)
elif args.sparsifier == SimulatedStereo.name:
sparsifier = SimulatedStereo(num_samples=args.num_samples, max_depth=max_depth)
elif args.sparsifier == DSOSampling.name:
sparsifier = DSOSampling(num_samples=args.num_samples, grad_th=args.grad_th, window_size=args.window_size, sub_window_size=args.sub_window_size)
# create results folder, if not already exists
output_directory = os.path.join('results',
'{}.refinenet={}.sparsifier={}.modality={}.arch={}.decoder={}.criterion={}.lr={}.bs={}'.
format(args.data, args.userefinenet, sparsifier, args.modality, args.arch, args.decoder, args.criterion, args.lr, args.batch_size))
if not os.path.exists(output_directory):
os.makedirs(output_directory)
train_csv = os.path.join(output_directory, 'train.csv')
test_csv = os.path.join(output_directory, 'test.csv')
best_txt = os.path.join(output_directory, 'best.txt')
# define loss function (criterion) and optimizer
if args.criterion == 'l2':
criterion = criteria.MaskedMSELoss().cuda()
elif args.criterion == 'l1':
criterion = criteria.MaskedL1Loss().cuda()
out_channels = 1
# Data loading code
print("=> creating data loaders ...")
traindir = os.path.join('data', args.data, 'train')
valdir = os.path.join('data', args.data, 'val')
train_dataset = NYUDataset(traindir, type='train',
modality=args.modality, sparsifier=sparsifier)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, sampler=None)
# set batch size to be 1 for validation
val_dataset = NYUDataset(valdir, type='val',
modality=args.modality, sparsifier=sparsifier)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True)
print("=> data loaders created.")
# evaluation mode
if args.evaluate:
if(args.eval_path != ""):
output_directory = args.eval_path
best_model_filename = os.path.join(output_directory, 'model_best.pth.tar')
if os.path.isfile(best_model_filename):
print("=> loading best model '{}'".format(best_model_filename))
checkpoint = torch.load(best_model_filename)
args.start_epoch = checkpoint['epoch']
best_result = checkpoint['best_result']
model = checkpoint['model']
print("=> loaded best model (epoch {})".format(checkpoint['epoch']))
else:
print("=> no best model found at '{}'".format(best_model_filename))
validate(val_loader, model, checkpoint['epoch'], write_to_file=False)
return
# optionally resume from a checkpoint
elif args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']+1
best_result = checkpoint['best_result']
model = checkpoint['model']
optimizer = checkpoint['optimizer']
print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
return
# create new model
else:
# define model
print("=> creating Model ({}-{}) ...".format(args.arch, args.decoder))
in_channels = len(args.modality)
if args.arch == 'resnet50':
if args.userefinenet:
model = RefineNet(layers=50, decoder=args.decoder, features=256, in_channels=in_channels)
elif args.usercnn:
model = RCNN(layers=50, batchsize=args.batch_size, decoder=args.decoder, in_channels=in_channels, out_channels=out_channels, pretrained=args.pretrained)
else:
model = ResNet(layers=50, decoder=args.decoder, in_channels=in_channels,
out_channels=out_channels, pretrained=args.pretrained)
elif args.arch == 'resnet18':
model = ResNet(layers=18, decoder=args.decoder, in_channels=in_channels,
out_channels=out_channels, pretrained=args.pretrained)
print("=> model created.")
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# create new csv files with only header
with open(train_csv, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
with open(test_csv, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
# model = torch.nn.DataParallel(model).cuda()
model = model.cuda()
print(model)
print("=> model transferred to GPU.")
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
result, img_merge = validate(val_loader, model, epoch)
# remember best rmse and save checkpoint
is_best = result.rmse < best_result.rmse
if is_best:
best_result = result
with open(best_txt, 'w') as txtfile:
txtfile.write("epoch={}\nmse={:.3f}\nrmse={:.3f}\nabsrel={:.3f}\nlg10={:.3f}\nmae={:.3f}\ndelta1={:.3f}\nt_gpu={:.4f}\n".
format(epoch, result.mse, result.rmse, result.absrel, result.lg10, result.mae, result.delta1, result.gpu_time))
if img_merge is not None:
img_filename = output_directory + '/comparison_best.png'
utils.save_image(img_merge, img_filename)
save_checkpoint({
'epoch': epoch,
'arch': args.arch,
'model': model,
'best_result': best_result,
'optimizer' : optimizer,
}, is_best, epoch)
def train(train_loader, model, criterion, optimizer, epoch):
average_meter = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
input, target = input.cuda(), target.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
torch.cuda.synchronize()
data_time = time.time() - end
# compute depth_pred
end = time.time()
depth_pred = model(input_var)
loss = criterion(depth_pred, target_var)
optimizer.zero_grad()
loss.backward() # compute gradient and do SGD step
optimizer.step()
torch.cuda.synchronize()
gpu_time = time.time() - end
# measure accuracy and record loss
result = Result()
output1 = torch.index_select(depth_pred.data, 1, torch.cuda.LongTensor([0]))
result.evaluate(output1, target)
average_meter.update(result, gpu_time, data_time, input.size(0))
end = time.time()
if (i + 1) % args.print_freq == 0:
print('=> output: {}'.format(output_directory))
print('Train Epoch: {0} [{1}/{2}]\t'
't_Data={data_time:.3f}({average.data_time:.3f}) '
't_GPU={gpu_time:.3f}({average.gpu_time:.3f}) '
'RMSE={result.rmse:.2f}({average.rmse:.2f}) '
'MAE={result.mae:.2f}({average.mae:.2f}) '
'Delta1={result.delta1:.3f}({average.delta1:.3f}) '
'REL={result.absrel:.3f}({average.absrel:.3f}) '
'Lg10={result.lg10:.3f}({average.lg10:.3f}) '.format(
epoch, i+1, len(train_loader), data_time=data_time,
gpu_time=gpu_time, result=result, average=average_meter.average()))
avg = average_meter.average()
with open(train_csv, 'a') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writerow({'mse': avg.mse, 'rmse': avg.rmse, 'absrel': avg.absrel, 'lg10': avg.lg10,
'mae': avg.mae, 'delta1': avg.delta1, 'delta2': avg.delta2, 'delta3': avg.delta3,
'gpu_time': avg.gpu_time, 'data_time': avg.data_time})
def validate(val_loader, model, epoch, write_to_file=True):
average_meter = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
input, target = input.cuda(), target.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
torch.cuda.synchronize()
data_time = time.time() - end
# compute output
end = time.time()
depth_pred = model(input_var)
torch.cuda.synchronize()
gpu_time = time.time() - end
# measure accuracy and record loss
result = Result()
output1 = torch.index_select(depth_pred.data, 1, torch.cuda.LongTensor([0]))
result.evaluate(output1, target)
average_meter.update(result, gpu_time, data_time, input.size(0))
end = time.time()
# save 8 images for visualization
skip = 50
if args.modality == 'd':
img_merge = None
else:
if args.modality == 'rgb':
rgb = input
elif args.modality == 'rgbd':
rgb = input[:,:3,:,:]
depth = input[:,3:,:,:]
if i == 0:
if args.modality == 'rgbd':
img_merge = utils.merge_into_row_with_gt(rgb, depth, target, depth_pred)
else:
img_merge = utils.merge_into_row(rgb, target, depth_pred)
elif (i < 8*skip) and (i % skip == 0):
if args.modality == 'rgbd':
row = utils.merge_into_row_with_gt(rgb, depth, target, depth_pred)
else:
row = utils.merge_into_row(rgb, target, depth_pred)
img_merge = utils.add_row(img_merge, row)
elif i == 8*skip:
filename = output_directory + '/comparison_' + str(epoch) + '.png'
utils.save_image(img_merge, filename)
if (i+1) % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\t'
'RMSE={result.rmse:.2f}({average.rmse:.2f}) '
'MAE={result.mae:.2f}({average.mae:.2f}) '
'Delta1={result.delta1:.3f}({average.delta1:.3f}) '
'REL={result.absrel:.3f}({average.absrel:.3f}) '
'Lg10={result.lg10:.3f}({average.lg10:.3f}) '.format(
i+1, len(val_loader), gpu_time=gpu_time, result=result, average=average_meter.average()))
avg = average_meter.average()
print('\n*\n'
'RMSE={average.rmse:.3f}\n'
'MAE={average.mae:.3f}\n'
'Delta1={average.delta1:.3f}\n'
'REL={average.absrel:.3f}\n'
'Lg10={average.lg10:.3f}\n'
't_GPU={time:.3f}\n'.format(
average=avg, time=avg.gpu_time))
if write_to_file:
with open(test_csv, 'a') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writerow({'mse': avg.mse, 'rmse': avg.rmse, 'absrel': avg.absrel, 'lg10': avg.lg10,
'mae': avg.mae, 'delta1': avg.delta1, 'delta2': avg.delta2, 'delta3': avg.delta3,
'data_time': avg.data_time, 'gpu_time': avg.gpu_time})
return avg, img_merge
def save_checkpoint(state, is_best, epoch):
checkpoint_filename = os.path.join(output_directory, 'checkpoint-' + str(epoch) + '.pth.tar')
torch.save(state, checkpoint_filename)
if is_best:
best_filename = os.path.join(output_directory, 'model_best.pth.tar')
shutil.copyfile(checkpoint_filename, best_filename)
if epoch > 0:
prev_checkpoint_filename = os.path.join(output_directory, 'checkpoint-' + str(epoch-1) + '.pth.tar')
if os.path.exists(prev_checkpoint_filename):
os.remove(prev_checkpoint_filename)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 5 epochs"""
lr = args.lr * (0.1 ** (epoch // 5))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()