-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_and_gen.py
142 lines (114 loc) · 4.47 KB
/
train_and_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
########### Author: Raktim Mitra email: [email protected] ##################
from rvagene.rvagene import RVAgene
from rvagene.utils import open_data
import numpy as np
import torch
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from mpl_toolkits.mplot3d import Axes3D
from torch.utils.data import TensorDataset
import sys
hidden_size = 70
hidden_layer_depth = 1
latent_length = 3
batch_size = 20
learning_rate = 0.003
n_epochs = 400
dropout_rate = 0.2
optimizer = 'Adam' # options: ADAM, SGD
cuda = False # options: True, False
print_every=30
clip = True # options: True, False
max_grad_norm=5
loss = 'MSELoss' # options: SmoothL1Loss, MSELoss
dataset=sys.argv[1]
X_train, _, y_train, _ = open_data('data', ratio_train=1, dataset=dataset)
num_classes = len(np.unique(y_train))
base = np.min(y_train) # Check if data is 0-based
if base != 0:
y_train -= base
train_dataset = TensorDataset(torch.from_numpy(X_train))
sequence_length = X_train.shape[1]
number_of_features = X_train.shape[2]
################## define model and train on synthetic data ##########################
rvagene = RVAgene(sequence_length=sequence_length,
number_of_features = number_of_features,
hidden_size = hidden_size,
hidden_layer_depth = hidden_layer_depth,
latent_length = latent_length,
batch_size = batch_size,
learning_rate = learning_rate,
n_epochs = n_epochs,
dropout_rate = dropout_rate,
optimizer = optimizer,
cuda = cuda,
print_every=print_every,
clip=clip,
max_grad_norm=max_grad_norm,
loss = loss)
rvagene.fit(train_dataset)
z_run = rvagene.transform(train_dataset)
############### plot 3 dimensional z plot ##################
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
ax1.scatter(z_run[:,0],z_run[:,1],z_run[:,2])
plt.savefig("figs/z_run_"+dataset+".png", dpi=500)
plt.close()
################## k means clustering on z ################
from sklearn.cluster import MiniBatchKMeans
kmeans = MiniBatchKMeans(n_clusters=6,
random_state=0,
batch_size=6,
max_iter=10).fit(z_run)
centers = kmeans.cluster_centers_
c_zs = kmeans.predict(z_run)
legend = dict()
hex_colors = []
counts = dict()
################## plot 3 D z with kmeans clustering ##############
for i in np.unique(c_zs):
hex_colors.append('#%06X' % np.random.randint(0, 0xFFFFFF))
legend[i]=hex_colors[-1]
colors = [hex_colors[int(i)] for i in c_zs]
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
ax1.scatter(z_run[:,0],z_run[:,1],z_run[:,2],c=colors)
legend_elements = [Patch(facecolor=legend[i],
label="cluster "+str(i) ) for i in legend.keys() ]
ax1.legend(handles=legend_elements)
plt.savefig("figs/clusters_"+dataset+".png", dpi=500)
plt.close()
#################### sample points from Z around each cluster mean detected by K-means, decode and plot those points #################
samples_per_cluster = 20
length = sequence_length
x= np.linspace(0,length/1000,length)
for i in range(centers.shape[0]):
mean = centers[i]
cov = np.identity(centers[i].shape[0]).astype(np.double)*0.3
samples = []
for gene in range(samples_per_cluster):
sample = np.random.multivariate_normal(mean,cov).astype(np.double)
samples.append(sample)
print("sample ",gene,"for cluster ", i,": ",sample)
torch_samples = torch.from_numpy(np.array(samples)).float()
mean_to_torch = torch.from_numpy(np.array([mean]*samples_per_cluster)).float()
if torch.cuda.is_available():
dev = "cuda:0"
else:
dev = "cpu"
device = torch.device(dev)
torch_samples = torch_samples.to(device)
mean_to_torch = mean_to_torch.to(device)
device = torch.device("cpu")
regen = np.squeeze((rvagene.decoder.forward(torch_samples)).to(device).data.numpy())
mean_regen = np.squeeze((rvagene.decoder.forward(mean_to_torch)).to(device).data.numpy())
print("shape of generated cluster:", regen.shape)
############### plot decoded cluster means ##############
for gene in range(samples_per_cluster):
plt.plot(x,regen[:,gene],alpha=0.6,linewidth=0.9)
plt.plot(x,mean_regen[:,0],color="#000000")
plt.legend(handles=[legend_elements[i]])
plt.savefig("figs/generated_cluster_" + dataset + str(i) + ".png", dpi=500)
plt.close()