forked from leondgarse/Keras_insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_test.py
183 lines (150 loc) · 7.69 KB
/
video_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python3
import os
import cv2
import glob2
import insightface
import numpy as np
import pandas as pd
import tensorflow as tf
# from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.preprocessing import normalize
from skimage.io import imread
from skimage import transform
from tqdm import tqdm
def init_det_and_emb_model(model_file):
# det = insightface.model_zoo.face_detection.retinaface_mnet025_v1()
det = insightface.model_zoo.SCRFD(model_file=os.path.expanduser('~/.insightface/models/antelope/scrfd_10g_bnkps.onnx'))
det.prepare(-1)
if model_file is not None:
face_model = tf.keras.models.load_model(model_file, compile=False)
else:
face_model = None
return det, face_model
def face_align_landmarks_sk(img, landmarks, image_size=(112, 112), method="similar"):
tform = transform.AffineTransform() if method == "affine" else transform.SimilarityTransform()
src = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.729904, 92.2041]], dtype=np.float32
)
ret = []
for landmark in landmarks:
# landmark = np.array(landmark).reshape(2, 5)[::-1].T
tform.estimate(landmark, src)
ret.append(transform.warp(img, tform.inverse, output_shape=image_size))
return (np.array(ret) * 255).astype(np.uint8)
def do_detect_in_image(image, det, image_format="BGR"):
imm_BGR = image if image_format == "BGR" else image[:, :, ::-1]
imm_RGB = image[:, :, ::-1] if image_format == "BGR" else image
bboxes, pps = det.detect(imm_BGR, (640, 640))
nimgs = face_align_landmarks_sk(imm_RGB, pps)
bbs, ccs = bboxes[:, :4].astype("int"), bboxes[:, -1]
return bbs, ccs, nimgs
def embedding_images(det, face_model, known_user, batch_size=32, force_reload=False):
while known_user.endswith("/"):
known_user = known_user[:-1]
dest_pickle = os.path.join(known_user, os.path.basename(known_user) + "_embedding.npz")
if force_reload == False and os.path.exists(dest_pickle):
aa = np.load(dest_pickle)
image_classes, embeddings = aa["image_classes"], aa["embeddings"]
else:
if not os.path.exists(known_user):
return [], [], None
# data_gen = ImageDataGenerator(preprocessing_function=lambda img: (img - 127.5) * 0.0078125)
# img_gen = data_gen.flow_from_directory(known_user, target_size=(112, 112), batch_size=1, class_mode='binary')
image_names = glob2.glob(os.path.join(known_user, "*/*.jpg"))
""" Detct faces in images, keep only those have exactly one face. """
nimgs, image_classes = [], []
for image_name in tqdm(image_names, "Detect"):
img = imread(image_name)
nimg = do_detect_in_image(img, det, image_format="RGB")[-1]
if nimg.shape[0] > 0:
nimgs.append(nimg[0])
image_classes.append(os.path.basename(os.path.dirname(image_name)))
""" Extract embedding info from aligned face images """
steps = int(np.ceil(len(image_classes) / batch_size))
nimgs = (np.array(nimgs) - 127.5) * 0.0078125
embeddings = [face_model(nimgs[ii * batch_size : (ii + 1) * batch_size]) for ii in tqdm(range(steps), "Embedding")]
embeddings = normalize(np.concatenate(embeddings, axis=0))
image_classes = np.array(image_classes)
np.savez_compressed(dest_pickle, embeddings=embeddings, image_classes=image_classes)
print(">>>> image_classes info:")
print(pd.value_counts(image_classes))
return image_classes, embeddings, dest_pickle
def image_recognize(image_classes, embeddings, det, face_model, frame, image_format="BGR"):
if isinstance(frame, str):
frame = imread(frame)
image_format = "RGB"
bbs, ccs, nimgs = do_detect_in_image(frame, det, image_format=image_format)
if len(bbs) == 0:
return [], [], [], []
emb_unk = face_model((nimgs - 127.5) * 0.0078125).numpy()
emb_unk = normalize(emb_unk)
dists = np.dot(embeddings, emb_unk.T).T
rec_idx = dists.argmax(-1)
rec_dist = [dists[id, ii] for id, ii in enumerate(rec_idx)]
rec_class = [image_classes[ii] for ii in rec_idx]
return rec_dist, rec_class, bbs, ccs
def draw_polyboxes(frame, rec_dist, rec_class, bbs, ccs, dist_thresh):
for dist, label, bb, cc in zip(rec_dist, rec_class, bbs, ccs):
# Red color for unknown, green for Recognized
color = (0, 0, 255) if dist < dist_thresh else (0, 255, 0)
label = "Unknown" if dist < dist_thresh else label
left, up, right, down = bb
cv2.line(frame, (left, up), (right, up), color, 3, cv2.LINE_AA)
cv2.line(frame, (right, up), (right, down), color, 3, cv2.LINE_AA)
cv2.line(frame, (right, down), (left, down), color, 3, cv2.LINE_AA)
cv2.line(frame, (left, down), (left, up), color, 3, cv2.LINE_AA)
xx, yy = np.max([bb[0] - 10, 10]), np.max([bb[1] - 10, 10])
cv2.putText(frame, "Label: {}, dist: {:.4f}".format(label, dist), (xx, yy), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2)
return frame
def video_recognize(image_classes, embeddings, det, face_model, video_source=0, frames_per_detect=5, dist_thresh=0.6):
cap = cv2.VideoCapture(video_source)
cur_frame_idx = 0
while True:
grabbed, frame = cap.read()
if grabbed != True:
break
if cur_frame_idx % frames_per_detect == 0:
rec_dist, rec_class, bbs, ccs = image_recognize(image_classes, embeddings, det, face_model, frame)
cur_frame_idx = 0
key = cv2.waitKey(1) & 0xFF
if key == ord("s"):
cv2.imwrite("{}.jpg".format(cur_frame_idx), frame)
if key == ord("q"):
break
draw_polyboxes(frame, rec_dist, rec_class, bbs, ccs, dist_thresh)
cv2.imshow("", frame)
cur_frame_idx += 1
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
import sys
import argparse
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-m", "--model_file", type=str, required=True, help="Saved basic_model file path, NOT model")
parser.add_argument("-k", "--known_user", type=str, default=None, help="Folder containing user images data")
parser.add_argument(
"-K", "--known_user_force", type=str, default=None, help="Folder containing user images data, force reload"
)
parser.add_argument(
"-b", "--embedding_batch_size", type=int, default=4, help="Batch size for extracting known user embedding data"
)
parser.add_argument("-s", "--video_source", type=str, default="0", help="Video source")
parser.add_argument(
"-t", "--dist_thresh", type=float, default=0.6, help="Cosine dist thresh, dist lower than this will be Unknown"
)
parser.add_argument("-p", "--frames_per_detect", type=int, default=5, help="Do detect every [NUM] frame")
args = parser.parse_known_args(sys.argv[1:])[0]
det, face_model = init_det_and_emb_model(args.model_file)
if args.known_user_force != None:
force_reload = True
known_user = args.known_user_force
else:
force_reload = False
known_user = args.known_user
if known_user != None and face_model is not None:
image_classes, embeddings, _ = embedding_images(det, face_model, known_user, args.embedding_batch_size, force_reload)
video_source = int(args.video_source) if str.isnumeric(args.video_source) else args.video_source
video_recognize(image_classes, embeddings, det, face_model, video_source, args.frames_per_detect, args.dist_thresh)